Bifurcation to badly ordered orbits in one-parameter families of circle maps, or angels fallen from the devil’s staircase
HTML articles powered by AMS MathViewer
- by Kevin Hockett and Philip Holmes
- Proc. Amer. Math. Soc. 102 (1988), 1031-1051
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934888-7
- PDF | Request permission
Abstract:
We discuss the structure of the bifurcation set of a one-parameter family of endomorphisms of ${S^1}$ having two critical points and negative Schwarzian derivative. We concentrate on the case in which one of the endpoints of the rotation set is rational, providing a partial characterization of components of the nonwandering set having specified rotation number and the bifurcations in which they are created. In particular we find, for each rational rotation number $p’/q’$ less than the upper boundary of the rotation set $p/q$, infinitely many saddle-node bifurcations to badly ordered periodic orbits of rotation number $p’/q’$.References
- Serge Aubry, The twist map, the extended Frenkel-Kontorova model and the devil’s staircase, Phys. D 7 (1983), no. 1-3, 240–258. Order in chaos (Los Alamos, N.M., 1982). MR 719055, DOI 10.1016/0167-2789(83)90129-X
- S. Aubry and P. Y. Le Daeron, The discrete Frenkel-Kontorova model and its extensions. I. Exact results for the ground-states, Phys. D 8 (1983), no. 3, 381–422. MR 719634, DOI 10.1016/0167-2789(83)90233-6
- C. Bernhardt, Rotation intervals of a class of endomorphisms of the circle, Proc. London Math. Soc. (3) 45 (1982), no. 2, 258–280. MR 670037, DOI 10.1112/plms/s3-45.2.258
- George D. Birkhoff, Sur quelques courbes fermées remarquables, Bull. Soc. Math. France 60 (1932), 1–26 (French). MR 1504983, DOI 10.24033/bsmf.1182
- Louis Block and John Franke, Existence of periodic points for maps of $S^{1}$, Invent. Math. 22 (1973/74), 69–73. MR 358867, DOI 10.1007/BF01425575 Block [1973], Bifurcations of endomorphisms of ${S^1}$, Ph.D. thesis, Northwestern University.
- Louis Block, Periodic orbits of continuous mappings of the circle, Trans. Amer. Math. Soc. 260 (1980), no. 2, 553–562. MR 574798, DOI 10.1090/S0002-9947-1980-0574798-8
- Louis Block, John Guckenheimer, MichałMisiurewicz, and Lai Sang Young, Periodic points and topological entropy of one-dimensional maps, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) Lecture Notes in Math., vol. 819, Springer, Berlin, 1980, pp. 18–34. MR 591173
- Louis Block, Periods of periodic points of maps of the circle which have a fixed point, Proc. Amer. Math. Soc. 82 (1981), no. 3, 481–486. MR 612745, DOI 10.1090/S0002-9939-1981-0612745-7
- Philip L. Boyland and Glen Richard Hall, Invariant circles and the order structure of periodic orbits in monotone twist maps, Topology 26 (1987), no. 1, 21–35. MR 880504, DOI 10.1016/0040-9383(87)90017-6
- Philip L. Boyland, Bifurcations of circle maps: Arnol′d tongues, bistability and rotation intervals, Comm. Math. Phys. 106 (1986), no. 3, 353–381. MR 859816, DOI 10.1007/BF01207252 Casdagli [1985], Periodic orbits for Birkhoff attractors, Preprint, University of Warwick.
- Alain Chenciner, Jean-Marc Gambaudo, and Charles Tresser, Une remarque sur la structure des endomorphismes de degré $1$ du cercle, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 5, 145–148 (French, with English summary). MR 756312
- Alain Chenciner, Jean-Marc Gambaudo, and Charles Tresser, Une remarque sur les familles d’endomorphismes de degré $1$ du cercle, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 15, 771–773. MR 772091
- Earl A. Coddington and Norman Levinson, Theory of ordinary differential equations, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. MR 0069338
- Pierre Collet and Jean-Pierre Eckmann, Iterated maps on the interval as dynamical systems, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2009. Reprint of the 1980 edition. MR 2541754, DOI 10.1007/978-0-8176-4927-2
- Robert L. Devaney, An introduction to chaotic dynamical systems, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986. MR 811850
- Jean-Marc Gambaudo, Oscar Lanford III, and Charles Tresser, Dynamique symbolique des rotations, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), no. 16, 823–826 (French, with English summary). MR 772104
- John Guckenheimer, On the bifurcation of maps of the interval, Invent. Math. 39 (1977), no. 2, 165–178. MR 438399, DOI 10.1007/BF01390107
- John Guckenheimer, Sensitive dependence to initial conditions for one-dimensional maps, Comm. Math. Phys. 70 (1979), no. 2, 133–160. MR 553966, DOI 10.1007/BF01982351
- John Guckenheimer, Bifurcations of dynamical systems, Dynamical systems (C.I.M.E. Summer School, Bressanone, 1978) Progr. Math., vol. 8, Birkhäuser, Boston, Mass., 1980, pp. 115–231. MR 589591
- John Guckenheimer and Philip Holmes, Nonlinear oscillations, dynamical systems, and bifurcations of vector fields, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR 709768, DOI 10.1007/978-1-4612-1140-2 Gumowski and C. Mira [1980], Recurrences and discrete dynamical systems, Lecture Notes in Math., vol. 809, Springer-Verlag, New York. Hockett [1986], Bifurcations of rational and irrational Cantor sets and periodic orbits in maps of the circle, Ph.D. thesis, Cornell University. Hockett and P. J. Holmes [1986a], Josephson’s junction, annulus maps, Birkhoff attractors, horseshoes and rotation sets, Ergodic Theory Dynamical Systems 6, 205-239. Hockett and P. J. Hollmes [1986b], Bifurcations to rotating Cantor sets in maps of the circle, Preprint, Cornell University.
- P. Holmes and D. Whitley, Bifurcations of one- and two-dimensional maps, Philos. Trans. Roy. Soc. London Ser. A 311 (1984), no. 1515, 43–102. MR 776547, DOI 10.1098/rsta.1984.0020
- Ryuichi Ito, Rotation sets are closed, Math. Proc. Cambridge Philos. Soc. 89 (1981), no. 1, 107–111. MR 591976, DOI 10.1017/S0305004100057984 V. Jakobson [1971], On smooth mappings of the interval into itself, Math. USSR-Sb. 14, 161-185.
- Leo Jonker and David Rand, Bifurcations in one dimension. I. The nonwandering set, Invent. Math. 62 (1981), no. 3, 347–365. MR 604832, DOI 10.1007/BF01394248
- Leo Jonker and David Rand, Bifurcations in one dimension. I. The nonwandering set, Invent. Math. 62 (1981), no. 3, 347–365. MR 604832, DOI 10.1007/BF01394248
- Leo P. Kadanoff, Supercritical behavior of an ordered trajectory, J. Statist. Phys. 31 (1983), no. 1, 1–27. MR 711468, DOI 10.1007/BF01010921
- A. Katok, Some remarks of Birkhoff and Mather twist map theorems, Ergodic Theory Dynam. Systems 2 (1982), no. 2, 185–194 (1983). MR 693974, DOI 10.1017/s0143385700001504
- A. Katok, Periodic and quasiperiodic orbits for twist maps, Dynamical systems and chaos (Sitges/Barcelona, 1982) Lecture Notes in Phys., vol. 179, Springer, Berlin, 1983, pp. 47–65. MR 708545, DOI 10.1007/3-540-12276-1_{3} Le Calvez [1985], Existence d’orbites quasi-periodiques dansles attracteurs de Birkhoff, Preprint, Université d’Orsay. S MacKay and C. Tresser [1984], Transition to chaos for two-frequency systems, Preprint, I.H.E.S. S. MacKay and C. Tresser [1985a], Boundary of chaos for bimodal maps of the interval, Preprint, University of Warwick.
- R. S. MacKay and C. Tresser, Transition to topological chaos for circle maps, Phys. D 19 (1986), no. 2, 206–237. MR 844701, DOI 10.1016/0167-2789(86)90020-5
- John N. Mather, Existence of quasiperiodic orbits for twist homeomorphisms of the annulus, Topology 21 (1982), no. 4, 457–467. MR 670747, DOI 10.1016/0040-9383(82)90023-4 Mather [1982b], Non-uniqueness of solutions of Percival’s Euler-Lagrange equation, Comm. Math. Phys. 86, 465-467.
- John N. Mather, More Denjoy minimal sets for area preserving diffeomorphisms, Comment. Math. Helv. 60 (1985), no. 4, 508–557. MR 826870, DOI 10.1007/BF02567431
- Robion C. Kirby and Laurence C. Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, No. 88, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1977. With notes by John Milnor and Michael Atiyah. MR 0645390, DOI 10.1515/9781400881505
- MichałMisiurewicz, Structure of mappings of an interval with zero entropy, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 5–16. MR 623532, DOI 10.1007/BF02698685
- MichałMisiurewicz, Absolutely continuous measures for certain maps of an interval, Inst. Hautes Études Sci. Publ. Math. 53 (1981), 17–51. MR 623533, DOI 10.1007/BF02698686
- MichałMisiurewicz, Twist sets for maps of the circle, Ergodic Theory Dynam. Systems 4 (1984), no. 3, 391–404. MR 776876, DOI 10.1017/S0143385700002534
- S. Newhouse, J. Palis, and F. Takens, Bifurcations and stability of families of diffeomorphisms, Inst. Hautes Études Sci. Publ. Math. 57 (1983), 5–71. MR 699057, DOI 10.1007/BF02698773
- Zbigniew Nitecki, Topological dynamics on the interval, Ergodic theory and dynamical systems, II (College Park, Md., 1979/1980), Progr. Math., vol. 21, Birkhäuser, Boston, Mass., 1982, pp. 1–73. MR 670074
- Sebastian J. van Strien, On the bifurcations creating horseshoes, Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), Lecture Notes in Math., vol. 898, Springer, Berlin-New York, 1981, pp. 316–351. MR 654898
- David Singer, Stable orbits and bifurcation of maps of the interval, SIAM J. Appl. Math. 35 (1978), no. 2, 260–267. MR 494306, DOI 10.1137/0135020
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 1031-1051
- MSC: Primary 58F08; Secondary 58F14
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934888-7
- MathSciNet review: 934888