ABSTRACT. Let τ denote the Thurston norm on $H_2(N; \mathbb{R})$, where N is a closed, oriented, irreducible, atoroidal three-manifold N. U. Oertel defined a taut oriented branched surface to be a branched surface with the property that each surface it carries is incompressible and τ-minimizing for the (nontrivial) homology class it represents. Given φ, a face of the τ-unit sphere in $H_2(N; \mathbb{R})$, Oertel then asks: is there a taut oriented branched surface carrying surfaces representing every integral homology class projecting to φ? In this article, an example is constructed for which the answer is negative.

0. Introduction. Let τ denote the Thurston norm on $H_2(N; \mathbb{R})$ for a closed, oriented, irreducible, atoroidal three-manifold N. Following the definition of U. Oertel, let a taut oriented branched surface be a branched surface B with the property that each surface carried by B is incompressible and τ-minimizing for the (nontrivial) homology class it represents. If φ is a face of the τ-unit sphere in $H_2(N; \mathbb{R})$, we say that φ is spanned by a branched surface B if B carries surfaces representing every integral homology class which projects to φ. Let V_1, \ldots, V_k be the vertices of φ, and let B be a taut oriented branched surface spanning φ. Then B carries surfaces F_1, \ldots, F_k representing integral classes which project to V_1, \ldots, V_k. Further, if $+$ denotes oriented cut-and-paste, then B must also carry $F_1 + \cdots + F_k$, which by definition is then incompressible and τ-minimizing. In this note, we present an example of N and φ with the property that any τ-minimizing surfaces representing classes projecting to certain vertices of φ have a compressible cut-and-paste sum. Thus, no branched surface spanning φ could be a taut oriented branched surface.

The construction of N is in two parts. In §1, we construct a manifold with boundary M which in fact would serve as N if it were closed. In §2, we rectify this by gluing two copies of M together to get N without changing the relevant properties of M.

1. Construction of M. Let f_i ($i = 1, 2, 3$) be copies of a twice punctured torus. Attach $f_i \times I$ ($i = 1, 2, 3$) to a solid torus V, gluing $(\partial f_i) \times I$ along longitudinal annuli of ∂V according to the schematic in Figure 1 ($I = [0, 1]$). Call the result M. Let F_i be the genus-2 surface formed from $f_i \times \frac{1}{2}$ by attaching an essential annulus in V to the boundary components of $f_i \times \frac{1}{2}$ (see F_i in Figure 1). M has two boundary components, $\partial_0 M$ and $\partial_1 M$, where $(f_i \times j) \subset \partial_j M$. Orient M, F_i so
that the transverse direction to \(f_i \times \frac{1}{2} \) runs from \(f_i \times 0 \) to \(f_i \times 1 \). Consider \(\partial V \) as the union of two sets of six longitudinal annuli apiece, \(\omega = \bigcup (\partial f_i) \times I \) and \(\rho = \partial V \setminus \omega \).

Lemma 1. (i) \(M \) is irreducible and atoroidal.

(ii) \(\partial_0 M \) and \(\partial_1 M \) are \(x \)-minimizing in \(H_2(M) \).

(iii) If \(H_i \) is a genus-2 surface in \(M \) with \([H_i] = [F_i] \in H_2(M)\), then \(H_i \) is isotopic to \(F_i \).

(iv) If \(H_i \) (\(i = 1, 2, 3 \)) is as above, \(H_1 + H_2 + H_3 \) contains a closed component entirely in \(V \), and is therefore compressible.

Proof. (i) is obvious.

(ii) Any \(\chi_- \)-minimizing surface \(G \) homologous to (say) \(\partial_0 M \) must intersect \(V \) in annuli and \(f_i \times I \) in a surface with Euler characteristic \(-2\). Therefore, \(\chi_-(G) \geq 6 = \chi_- (\partial_0 M) \).

(iii) \(H_i \cap (f_j \times I) \) (\(i \neq j \)) must consist of annuli parallel to \((\partial f_i) \times I\). These can be removed by isotopy. Similarly, \(H_i \cap ((\partial f_i) \times I) \) may be made a single simple closed curve.

(iv) The isotopy in (iii) may be performed on \(\omega \) rather than on \(H_i \). Thus, assume that \(C_i = V \cap H_i \) is an annulus and that \((\bigcap H_i) = (\bigcap C_i) \subset V\). If \(C_1 + C_2 \) contains a closed component \(W \), then either \(C_3 \cap W = \emptyset \) or \(C_3 \) separates \(W \). In the latter case, one “half” or the other gives rise to a closed component of \(C_1 + C_2 + C_3 \).

Assume, therefore, that \(C_1 + C_2 \) is two annuli \(D_+ \) and \(D_- \), with \(D_+ \) (resp., \(D_- \)) cutting out a solid torus \(Y_+ \) (resp., \(Y_- \)) from \(V \) with the transverse direction pointing out of \(Y_+ \) (resp., into \(Y_- \)). Now \(C_1 \cup C_2 \) separates the two components of \(\partial C_3 \), so \(C_3 \cap (C_1 + C_2) \) is not empty: say that \(C_3 \cap D_+ \neq \emptyset \). Let the subtorus of
The transverse direction of C_3 pointing out be called X. Then $Y_+ \cap X \neq \emptyset$ and $Y_+ \cap X \cap \partial D_+ = \emptyset$, so $D_+ + C_3$ has a closed component. Q.E.D.

The following lemma will be needed in the next section.

Lemma 2. Let γ_0 be a simple closed curve in $\partial_0 M$ such that $[\gamma_0] \neq 1 \in \pi_1(\partial_0 M)$ and one of the following holds:

(i) \exists a simple closed curve $\gamma_1 \subset \partial_1 M$ such that $\gamma_0 \cup \gamma_1 = \partial C$ for an incompressible, ∂-incompressible annulus $C \subset M$;

(ii) γ_0 is isotopic in M to a curve $\gamma_1 \subset \partial_1 M$; or

(iii) γ_0 is isotopic in M to a curve $\delta \subset F_i$ for some i.

Then \exists an isotopy of γ_0 in $\partial_0 M$ such that, after the isotopy, $\gamma_0 \cap V = \emptyset$.

Proof.

(i) Let D be an annulus in the collection ω, and consider $C \cap D$. Use ∂-incompressibility of C to remove inessential arcs of $C \cap D$. Suppose a is an essential arc of $C \cap D$; then there must be other, parallel arcs of $C \cap \omega$ in C. Choose the component E of $C \cap \omega$ which contains a in its boundary and which lies in V. Let β be the other arc of $C \cap \omega$ in ∂E. If $a \subset (\partial f_1) \times I$, the fact that spanning arcs of $(\partial f_1) \times I (k \neq i)$ represent different classes of $H_1(M, \partial M)$ from a implies that $\beta \subset (\partial f_1) \times I$ as well. Thus E may be pushed out of V into $f_k \times I$. Finish the proof by induction.

(ii) Use the Generalized Dehn’s Lemma [SW] to find an embedded annulus as in the statement of condition (i).

(iii) The isotopy can be extended from F_i to $\partial_1 M$ by noticing there is a “reflection” of M in F_i. That is, if $i = 1$, the map taking $f_1 \times j \rightarrow f_1 \times (1 - j)$, $f_2 \times j \rightarrow f_3 \times (1 - j)$, and $f_3 \times j \rightarrow f_2 \times (1 - j)$ can be extended to V as a homeomorphism. Q.E.D.

2. **Construction of N.** A component $\partial_2 M$ of ∂M can be seen in Figure 2. Let $\eta_j : \partial_2 M \rightarrow \partial_2 M$ be the product of Dehn twists in the two bold curves shown in Figure 2. Notice that for any simple closed curve γ in $\partial_2 M$ with $\gamma \cap \partial \rho = \emptyset$ and $[\gamma] \neq 1 \in \pi_1(\partial_2 M)$, $\eta_j(\gamma) \cap \partial \rho \neq \emptyset$ and each arc of $\eta_j(\gamma) \cap \partial \rho$ is essential in the component of $\partial_2 M \setminus \partial \rho$ which contains it. (In general, any curves with these properties suffice for this construction.) Define N to be two copies of M glued along their boundaries by η_j. Pick one copy of $M \subset N$ to be referred to as M; the other will be M'.

Lemma 3. N is irreducible and atoroidal. $\partial_2 M$ is x-minimizing for $[\partial_2 M] \in H_2(N)$.

Proof. Since the $\partial_2 M$ are incompressible and M is irreducible, N is irreducible. Consider a torus $T \subset N$ in general position with respect to ∂M. Remove inessential curves of $T \cap \partial M$; then $T \cap \partial M$ consists of parallel essential curves on T. Now note that, if D is an annular component of $T \setminus \partial M$ lying in M, either D is $(\partial-)compressible or both adjacent annuli of $T \setminus \partial M$ are $(\partial-)compressible in M' (this uses Lemma 2 and the construction of N). Thus, either T is compressible or $T \cap \partial M$ may be isotopically reduced until T lies in M or M' and bounds a solid torus.

If H_j is incompressible and x-minimizing for $[\partial_j M] \subset N$, an argument of Gabai (Lemma 3.6 of [G]) shows that H_j may be taken as disjoint from ∂M. Then $H_j \subset M$ or M', implying that $x(H_j) = x(\partial_j M)$. Q.E.D.
Lemma 4. Let H_i be a genus-2 surface in N with $[H_i] = [F_i] \in H_2(N)$. Then there exists an isotopy of H_i in N taking H_i to F_i.

Proof. For convenience, construct the cover $\tilde{\Pi}: \tilde{N} \to N$ using countably many copies of M glued alternately using η_0 and η_1, indexing the copies of M so that $\Pi(M_0) = M_1, \Pi(M_{\pm 1}) = M', \Pi(M_{\pm 2}) = M$, etc. Let \tilde{F}_i be the lift of F_i into M_0 and \tilde{H}_i the corresponding lift of H_i. Let k_+ be the largest index n such that $M_n \cap \tilde{H}_i \neq \emptyset$; define k_- analogously. Induct on $k = k_+ - k_-$. $k = 0$ is Lemma 1(iii).

Without loss of generality, assume that $n = k_+ > 0$. Let $Y = \tilde{H}_i \cap M_n$. Use the product structure on $(f_j \times I) \subset M_n$ to push $Y \cap ((f_j \times I) \subset M_n)$ into M_{n-1}. Similarly, push any ∂-parallel components of Y remaining in $V \subset M_n$ into M_{n-1}. Let what is left of Y in M_n still be called Y.

Claim. $Y = \emptyset$.

If not, then $[Y] = 0 \in H_2(M_n, \partial M_n)$ but each component of Y is nontrivial in homology. This forces Y to be pairs of essential annuli in $V \subset M_n$ with boundary components lying exclusively on $\partial_0 M_n$ or $\partial_1 M_n$: say $\partial_0 M_n$. Let \tilde{H}_i' be \tilde{H}_i after surgery on \tilde{H}_i along $\partial_0 M_n$ and after discarding the resulting toral components of M_n (see Figure 3).

\tilde{H}_i' has a smaller k than \tilde{H}_i, so by induction \tilde{H}_i' is isotopic to \tilde{F}_i; in particular, the curves of ∂Y are isotopic either to curves in $\partial_1 M_{n-1}$ (if $n > 1$) or in \tilde{F}_i (if $n = 1$). By Lemma 2 and the map η_0, ∂Y would have to have nontrivial intersection with $\partial \rho \subset M_n$. This contradiction establishes the Claim and finishes the proof. Q.E.D.

Theorem. There is a face of the x-unit sphere in $H_2(N)$ which is not spanned by a taut oriented branched surface.
PROOF. Since \(F_1, F_2, F_3 \) and \(F_1 + F_2 + F_3 \) are all \(x \)-minimizing representatives of their respective classes in \(H_2(N) \), their classes project to the same face \(\varphi \) of the unit sphere. Let \(\mathcal{B} \) be a branched surface spanning \(\varphi \), and let \(H_i \subset N \) be surfaces carried by \(\mathcal{B} \) such that \([H_i] = [F_i] \in H_2(N) \) and each \(H_i \) has genus 2. Then the proof of Lemma 4 constructs an isotopy of \(\partial_0 M \) and \(\partial_1 M \) in \(N \) which results in \(H_i \subset M \). By Lemma 1, \(H_1 + H_2 + H_3 \) contains a homologically trivial component \(D \) in \(V \). \(\mathcal{B} \) carries \(\sum H_i \), so it must carry \(D \). Q.E.D.

REFERENCES

DIVISION OF PHYSICAL AND BIOLOGICAL SCIENCES, ST. EDWARD’S UNIVERSITY, AUSTIN, TEXAS 78704