The pseudocompact extension $\alpha X$
HTML articles powered by AMS MathViewer
- by C. E. Aull and J. O. Sawyer
- Proc. Amer. Math. Soc. 102 (1988), 1057-1064
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934890-5
- PDF | Request permission
Abstract:
For any Tychonoff space we define $\alpha X = (\beta X - vX) \cup X = \beta X - (vX - X)$. We show that $\alpha X$ is the smallest pseudocompactification $Y$ of $X$ contained is $\beta X$ such that every free hyperreal $z$-ultrafilter on $X$ converges in $Y$ and is the largest pseudocompactification $Y$ of $X$ contained in $\beta X$ such that every point in $Y - X$ is contained in a zero set of $Y$ which does not intersect $X$. A space $S$ is defined to be $\alpha$-embedded in a space $X$ if $\alpha S \subset \beta X$. Properties of $\alpha$-embeddings and its relation to $v$-embeddings of Blair ${C^*}$-embeddings, $C$-embeddings, and well-embeddings are investigated. For instance, if $S$ is $\alpha$-embedded and dense in $X,S$ is fully well-embedded (for $P,R \subset X$, where $S \subset P \subset R \subset X$, $P$ is well-embedded in $R$) in $X$ iff $\alpha X - \alpha S = X - S$.References
- Robert L. Blair, On $\upsilon$-embedded sets in topological spaces, TOPO 72—general topology and its applications (Proc. Second Pittsburgh Internat. Conf., Pittsburgh, Pa., 1972; dedicated to the memory of Johannes H. de Groot), Lecture Notes in Math., Vol. 378, Springer, Berlin, 1974, pp. 46–79. MR 0358677
- Robert L. Blair and Anthony W. Hager, Extensions of zero-sets and of real-valued functions, Math. Z. 136 (1974), 41–52. MR 385793, DOI 10.1007/BF01189255
- Leonard Gillman and Meyer Jerison, Rings of continuous functions, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0116199, DOI 10.1007/978-1-4615-7819-2
- Melvin Henriksen and Marlon C. Rayburn, On nearly pseudocompact spaces, Topology Appl. 11 (1980), no. 2, 161–172. MR 572371, DOI 10.1016/0166-8641(80)90005-X
- W. Moran, Measures on metacompact spaces, Proc. London Math. Soc. (3) 20 (1970), 507–524. MR 437706, DOI 10.1112/plms/s3-20.3.507
- S. Mrówka, On the potency of subsets of $\beta N$, Colloq. Math. 7 (1959), 23–25. MR 114193, DOI 10.4064/cm-7-1-23-25 —, Some properties of $Q$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. (1958), 161-163.
- Russell C. Walker, The Stone-Čech compactification, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 83, Springer-Verlag, New York-Berlin, 1974. MR 0380698, DOI 10.1007/978-3-642-61935-9
- Maurice D. Weir, Hewitt-Nachbin spaces, North-Holland Mathematics Studies, No. 17, North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1975. MR 0514909
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 1057-1064
- MSC: Primary 54C45; Secondary 54D30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934890-5
- MathSciNet review: 934890