A ribbon knot group which has no free base
HTML articles powered by AMS MathViewer
- by Katsuyuki Yoshikawa
- Proc. Amer. Math. Soc. 102 (1988), 1065-1070
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934891-7
- PDF | Request permission
Abstract:
We consider the following problem: If a group $G$ satisfies the conditions (1) $G$ has a finite presentation with $r + 1$ generators and $r$ relators, and (2) there exists an element $x$ of $G$ such that $G = {\left \langle {\left \langle x \right \rangle } \right \rangle ^G}$ where ${\left \langle {\left \langle x \right \rangle } \right \rangle ^G}$ is the normal closure of $x$ in $G$, then is $G$ an HNN (Higman-Neumann-Neumann) extension of a free group of finite rank? In this paper, we give a negative answer to the problem. Thus it follows that there exists a ribbon $n$-knot group $(n \geq 2)$ which has no free base.References
- J. J. Andrews and M. L. Curtis, Extended Nielsen operations in free groups, Amer. Math. Monthly 73 (1966), 21–28. MR 195928, DOI 10.2307/2313917
- M. A. Gutierrez, On the Seifert manifold of a $2$-knot, Trans. Amer. Math. Soc. 240 (1978), 287–294. MR 482778, DOI 10.1090/S0002-9947-1978-0482778-7
- A. Karrass, A. Pietrowski, and D. Solitar, An improved subgroup theorem for HNN groups with some applications, Canadian J. Math. 26 (1974), 214–224. MR 432766, DOI 10.4153/CJM-1974-021-1
- A. Karrass and D. Solitar, The subgroups of a free product of two groups with an amalgamated subgroup, Trans. Amer. Math. Soc. 150 (1970), 227–255. MR 260879, DOI 10.1090/S0002-9947-1970-0260879-9
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064 W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory, Pure and Appl. Math., vol. 13, Interscience, New York, 1966.
- Stephen Meskin, A. Pietrowski, and Arthur Steinberg, One-relator groups with center, J. Austral. Math. Soc. 16 (1973), 319–323. Collection of articles dedicated to the memory of Hanna Neumann, III. MR 0338187
- Lee Neuwirth, The algebraic determination of the genus of knots, Amer. J. Math. 82 (1960), 791–798. MR 120648, DOI 10.2307/2372940
- Alfred Pietrowski, The isomorphism problem for one-relator groups with non-trivial centre, Math. Z. 136 (1974), 95–106. MR 349851, DOI 10.1007/BF01214345
- Elvira Strasser Rapaport, Remarks on groups of order $1$, Amer. Math. Monthly 75 (1968), 714–720. MR 236251, DOI 10.2307/2315181
- Elvira Rapaport Strasser, Knot-like groups, Knots, groups, and $3$-manifolds (Papers dedicated to the memory of R. H. Fox), Ann. of Math. Studies, No. 84, Princeton Univ. Press, Princeton, N.J., 1975, pp. 119–133. MR 0440531 O. Schreier, Über die Gruppen ${A^a}{B^b} = 1$, Abh. Math. Sem. Univ. Hamburg 3 (1923), 167-169.
- Katsuyuki Yoshikawa, A note on Levine’s conditions for knot groups, Math. Sem. Notes Kobe Univ. 10 (1982), no. 2, 633–636. MR 704948 —, On $n$-knot groups which have abelian bases, preprint.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 1065-1070
- MSC: Primary 57Q45; Secondary 20E06, 20F05
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934891-7
- MathSciNet review: 934891