Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The gap between $ {\rm cmp}\,X$ and $ {\rm def}\,X$ can be arbitrarily large

Author: Takashi Kimura
Journal: Proc. Amer. Math. Soc. 102 (1988), 1077-1080
MSC: Primary 54D35; Secondary 54F45
MathSciNet review: 934893
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We give an example of a separable metrizable space $ X$ with def $ X - {\text{cmp}}\;X = n$ for every $ n \in \mathbb{N}$.

References [Enhancements On Off] (What's this?)

  • [1] Ryszard Engelking, Dimension theory, North-Holland Publishing Co., Amsterdam-Oxford-New York; PWN—Polish Scientific Publishers, Warsaw, 1978. Translated from the Polish and revised by the author; North-Holland Mathematical Library, 19. MR 0482697
  • [2] J. de Groot and T. Nishiura, Inductive compactness as a generalization of semi-compactness, Fund. Math. 58 (1966), 201–218. MR 0196704,
  • [3] J. van Mill, Review of R. Pol's paper [5], MR 85b:54041.
  • [4] Keiô Nagami, Dimension theory, With an appendix by Yukihiro Kodama. Pure and Applied Mathematics, Vol. 37, Academic Press, New York-London, 1970. MR 0271918
  • [5] Roman Pol, A counterexample to J. de Groot’s conjecture 𝑐𝑚𝑝=𝑑𝑒𝑓, Bull. Acad. Polon. Sci. Sér. Sci. Math. 30 (1982), no. 9-10, 461–464 (1983) (English, with Russian summary). MR 703574
  • [6] Leonard R. Rubin, R. M. Schori, and John J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl. 10 (1979), no. 1, 93–102. MR 519716

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D35, 54F45

Retrieve articles in all journals with MSC: 54D35, 54F45

Additional Information

Keywords: Compactification, dimension, compactness degree, compactness deficiency
Article copyright: © Copyright 1988 American Mathematical Society