THE GAP BETWEEN \(\text{cmp} \, X \) AND \(\text{def} \, X \) CAN BE ARBITRARILY LARGE

TAKASHI KIMURA

(Communicated by Dennis Burke)

Dedicated to Professor Yukihiro Kodama on his 60th birthday

Abstract. We give an example of a separable metrizable space \(X \) with
\(\text{def} \, X - \text{cmp} \, X = n \) for every \(n \in \mathbb{N} \).

1. Introduction. In this paper all spaces are separable and metrizable.

The compactness degree, \(\text{cmp} \, X \), of a space \(X \) is defined as follows: a space \(X \) satisfies \(\text{cmp} \, X = -1 \) if \(X \) is compact; if \(n \) is a nonnegative integer, then \(\text{cmp} \, X \leq n \) means that each point of \(X \) has arbitrarily small neighborhoods \(U \) with \(\text{cmp} \, \text{Bd} \, U \leq n - 1 \). We put \(\text{cmp} \, X = n \) if \(\text{cmp} \, X \leq n \) and \(\text{cmp} \, X < n - 1 \). If there is no integer \(n \) for which \(\text{cmp} \, X \leq n \), then we put \(\text{cmp} \, X = \infty \).

The compactness deficiency, \(\text{def} \, X \), of a space \(X \) is the least integer \(n \) for which \(X \) has a compactification \(\alpha \, X \) with \(\dim(\alpha \, X - X) \leq n \). We allow \(n \) to be \(\infty \).

In general, the inequality \(\text{cmp} \, X \leq \text{def} \, X \) holds. The well-known conjecture of J. de Groot (see [2]) that \(\text{cmp} \, X = \text{def} \, X \) has been negatively solved by R. Pol [5]; the space \(X \) of Pol’s example has \(\text{cmp} \, X = 1 \) and \(\text{def} \, X = 2 \). In the review of R. Pol’s paper [5], J. van Mill [3] states “It seems still to be open whether the gap between \(\text{cmp} \, X \) and \(\text{def} \, X \) can be arbitrarily large.”

The purpose of this paper is to answer this question affirmatively. Namely, we shall give the following example.

Example. For every \(n \in \mathbb{N} \) there exists a space \(X \) such that \(\text{def} \, X - \text{cmp} \, X = n \).

2. Preliminaries. Let \(S \) be a collection of subsets of a space \(X \). Then we shall write \([S]^n\) for \(\{T: T \subseteq S \text{ with } |T| = n\} \), \(\text{Bd} \, S \) for \(\{\text{Bd} \, S: S \in S\} \) and \(\bigcap S \) for \(\bigcap\{S: S \in S\} \).

Let \(Y \) be a subspace of a space \(X \) and \(\mathcal{U} \) a collection of open subsets of \(X \). Then \(\mathcal{U} \) is an outer base for \(Y \) in \(X \) if for every \(y \in Y \) and any neighborhood \(V \) of \(y \) in \(X \) there is \(U \in \mathcal{U} \) such that \(y \in U \subset V \).

The following lemma is needed in §4; the proof is straightforward.

2.1. Lemma. Let \(X \) be a space with \(\text{def} \, X < n \) and \(\{(E_j, F_j): 1 \leq j \leq n\} \) a collection of pairs of disjoint compact subsets of \(X \). Then for each \(j, 1 \leq j \leq n \), there is a partition \(T_j \) in \(X \) between \(E_j \) and \(F_j \) such that \(\bigcap\{T_j: 1 \leq j \leq n\} \) is compact.
To show our example it suffices to construct a space Y with $n \leq \text{def } Y - \text{cmp } Y < \infty$. Indeed, for this space Y we construct another space Z with $\text{cmp } Z = \text{def } Z = \text{def } Y - n$; such a space exists (see [2, Theorem 3.1.1]). Let $X = Y \oplus Z$ be the topological sum of Y and Z. Then
\[
\text{cmp } X = \max\{\text{cmp } Y, \text{cmp } Z\} = \text{cmp } Z = \text{def } Y - n
\]
and
\[
\text{def } X = \max\{\text{def } Y, \text{def } Z\} = \text{def } Y.
\]
Thus we have $\text{def } X - \text{cmp } X = n$.

In the next section we shall construct a space X such that $m \leq \text{def } X - \text{cmp } X \leq 2m$ for every $m \in \mathbb{N}$.

Throughout the rest of this paper, we shall fix a positive integer m and put $n = 2m + 1$. Let $I = [0,1]$ be the closed unit interval.

3. Construction. Let
\[
\partial I^n = \{(x_j) \in I^n : x_j = 0 \text{ or } 1 \text{ for some } j, \; 1 \leq j \leq n\}
\]
be the combinatorial boundary of the n-dimensional cube I^n. We take countable, dense subsets D_0 and D_1 in $(0,1)$ with $D_0 \cap D_1 = \emptyset$. Let us set
\[
M_i = \{(x_j) \in (0,1)^n : |\{j : x_j \in D_i\}| \geq n - m\},
\]
and
\[
L_i = (0,1)^n - M_i
\]
for each $i = 0, 1$. Then, obviously, $M_0 \cap M_1 = \emptyset$ and by [1, 1.8.5], $\dim L_i = m$.

Then, by [4, 12.12–13], there are two collections \mathcal{B}_0 and \mathcal{B}_1 of open subsets of I^n satisfying the following conditions (1) to (6) below:

1. \mathcal{B}_0 is an outer base for $(I^{n-1} \times [0, \frac{2}{3})) \cap \partial I^n$ in I^n,
2. \mathcal{B}_1 is an outer base for $(I^{n-1} \times (\frac{1}{3}, 1]) \cap \partial I^n$ in I^n,
3. $\mathcal{F} \cap L_i = \emptyset$ for every $\mathcal{F} \in [\mathcal{B}_i]^{m+1}$ and each $i = 0, 1$,
4. $\text{Cl } B \subset I^{n-1} \times [0, \frac{2}{3})$ for every $B \in \mathcal{B}_0$,
5. $\text{Cl } B \subset I^{n-1} \times (\frac{1}{3}, 1]$ for every $B \in \mathcal{B}_1$, and
6. $|B_i| = \omega$ for each $i = 0, 1$.

By (6), $[\mathcal{B}_i]^{m+1}$ is countable; therefore, we enumerate it as $[\mathcal{B}_i]^{m+1} = \{\mathcal{F}_j : j \in \mathbb{N}\}$. Let us see $E_{ij} = \bigcap \mathcal{F}_{ij}$, and let
\[
E_{ik} = \bigcup \{F_{ij} : j \leq k\} - \partial I^n
\]
for $i = 0, 1$ and $k \in \mathbb{N}$. Then, by (3), we have $E_{0k} \cap E_{1k} \subset M_0 \cap M_1 = \emptyset$. Thus E_{0k} and E_{1k} are disjoint closed subsets of $(0,1)^n$, therefore we can take disjoint open subsets U_{0k} and U_{1k} in $(0,1)^n$ such that

7. $E_{ik} \subset U_{ik}$ for each $i = 0, 1$,
8. $U_{0k} \subset I^{n-1} \times [0, \frac{2}{3})$, and
9. $U_{1k} \subset I^{n-1} \times (\frac{1}{3}, 1]$.

Let us set
\[
X_k = (I^n - U_{0k} \cup U_{1k}) \times \{1/k\} \text{ for every } k \in \mathbb{N},
\]
$X_0 = \partial I^n \times \{0\}$, and
\[
X = \bigcup \{X_k : k = 0, 1, 2, \ldots\}.
\]
We regard X as the subspace of the $(n + 1)$-dimensional cube
\[I^{n+1} = \prod \{I_j : 1 \leq j \leq n + 1\}, \]
where I_j is the copy of I.

4. $2m \leq \text{def } X \leq 2m + 1$. Note that $\text{def } Y \leq \dim Y$ for every space Y (see [5, Theorem 2.1.1]). Since $\dim X \leq n = 2m + 1$, we have $\text{def } X \leq 2m + 1$. Assume that $\text{def } X < 2m = n - 1$. Let us set
\[J_j = (I_1 \times \cdots \times I_{j-1} \times \{0\} \times I_{j+1} \times \cdots \times I_{n+1}) \cap X, \]
and
\[K_j = (I_1 \times \cdots \times I_{j-1} \times \{1\} \times I_{j+1} \times \cdots \times I_{n+1}) \cap X \]
for every j, $1 \leq j \leq n - 1$. Then J_j and K_j are disjoint compact subsets of X. Thus, by Lemma 2.1, there is a partition T_j in X between J_j and K_j for every j, $1 \leq j \leq n - 1$, such that $\bigcap \{T_j : 1 \leq j \leq n - 1\}$ is compact. Since $T_j \cap X_k$ is a partition in X_k between $J_k \cap X_k$ and $K_k \cap X_k$, and X_k is closed in $I^n \times \{1/k\}$, there is a partition T_{jk} in $I^n \times \{1/k\}$ between $T_j \cap X_k$ and $K_j \cap X_k$ such that $T_{jk} \cap X_k \subset T_j \cap X_k$ for each j, $1 \leq j \leq n - 1$, and each $k \in \mathbb{N}$. Let S_k be a continuum meeting $I^{n-1} \times \{1/6\} \times \{1/k\}$ and $I^{n-1} \times \{5/6\} \times \{1/k\}$ in $I^n \times \{1/k\}$ with $S_k \subset \bigcap \{T_{jk} : 1 \leq j \leq n - 1\} \cap (I^{n-1} \times [1/6, 5/6] \times \{1/k\})$ (see [6, Lemma 5.2]). Since S_k is connected, by (8) and (9), we have $S_k \subset U_{0k} \cup U_{1k}$. Thus we have $S_k \cap X_k \neq \emptyset$ for every $k \in \mathbb{N}$. Obviously, $S_k \cap X_k \subset \bigcap \{T_j : 1 \leq j \leq n - 1\} \cap X_k \subset \bigcap \{T_j : 1 \leq j \leq n - 1\}$ and $\{S_k \cap X_k : k \in \mathbb{N}\}$ is discrete in X. This contradicts the compactness of $\bigcap \{T_j : 1 \leq j \leq n - 1\}$. Hence we have $\text{def } X \geq n - 1 = 2m$.

5. $1 \leq \text{cmp } X \leq m$. Note that $\text{cmp } X \leq 0$ if and only if $\text{def } X \leq 0$ (see [2, Main Theorem]). Since $\text{def } X \geq 2m > 0$, we have $\text{cmp } X \geq 1$.

We shall prove that $\text{cmp } X \leq m$. To prove this we only consider points of X_0, because $\bigcup \{X_k : k \in \mathbb{N}\}$ is locally compact and open in X. First we shall show the following

Claim. Let $1 \leq l \leq m$. For every \(\{B_1, \ldots, B_l\} \in [S_l]^l \) and any \((k_1, \ldots, k_l) \in \mathbb{N}^l\) we have $\text{cmp } \cap \{\text{Bd}_X B_j' : 1 \leq j \leq l\} \leq m - l$, where $B_j' = (B_j \times [0, 1/k_j]) \cap X$ for each j, $1 \leq j \leq l$.

Proof of Claim. We proceed by downward induction on l.

Step 1. $l = m$.

Let \(Y = \bigcap \{\text{Bd}_X B_j' : 1 \leq j \leq m\}, \ y \in Y, \) and U be a neighborhood of y in Y. We show that there is a neighborhood V of y in Y such that $V \subset U$ and $\text{Bd}_V V$ is compact. We may assume that $y \in X_0$. Then, by (1), (2), (4) and (5), there are $B_{m+1} \in B_i$ and $k \in \mathbb{N}$ such that $y \in (B_{m+1} \times [0, 1/k]) \cap \bigcap \{B_j : 1 \leq j \leq m + 1\} = F_p$ for some $p \in \mathbb{N}$. Let $V = (B_{m+1} \times [0, 1/q]) \cap Y$, where $q = \max\{k, p\}$. Then V is a neighborhood of y in Y. Obviously, we have $V \subset U$. By (7), it is easy to see that
\[\text{Bd}_V V \subset \left(\bigcap \{\text{Bd}_X B_j' : 1 \leq j \leq m + 1\} \cap \partial I^n \right) \times \{0, 1/(p+1), 1/(p+2), \ldots\} \subset X. \]
Hence $\text{Bd}_V V$ is compact; therefore, we have $\text{cmp } Y \leq 0 = m - l$.

Step 2. Let $1 \leq l < m$ and suppose that the Claim is satisfied for $l - 1$.

Let \(Y = \bigcap \{ \text{Bd}_X B_j' : 1 \leq j \leq l \} \), \(y \in Y \), and \(U \) be a neighborhood of \(y \) in \(Y \). We may assume that \(y \in X_0 \). Take \(B_{l+1} \in \mathcal{B}_i \) and \(k \in \mathbb{N} \) such that \(y \in B_{l+1}' = (B_{l+1} \times [0, 1/k)) \cap X \) and \(B_{l+1}' \cap Y \subset U \). Then we have
\[
\text{Bd}_X(B_{l+1}' \cap Y) \subset \bigcap \{ \text{Bd}_X B_j' : 1 \leq j \leq l + 1 \}.
\]
By the induction hypothesis, we have
\[
\text{cmp}_B \text{Bd}_Y(B_{l+1}' \cap Y) \leq \text{cmp}_B \bigcap \{ \text{Bd}_Y B_j' : 1 \leq j \leq l + 1 \}
\leq m - (l + 1) = m - l - 1.
\]
Hence we have \(\text{cmp} Y \leq m - l \).

This completes the proof of the Claim.

By the Claim, in particular, \(\text{cmp} \text{Bd}_X((B \times [0, 1/k)) \cap X) \leq m - 1 \) for every \(B \in \mathcal{B}_i \) and every \(k \in \mathbb{N} \). Since \(\{(B \times [0, 1/k)) \cap X : B \in \mathcal{B}_0 \cup \mathcal{B}_1 \text{ and } k \in \mathbb{N}\} \) is an outer base for \(X_0 \) in \(X \), we have \(\text{cmp} X \leq m \).

ADDED IN PROOF. By using the same techniques in §3, the author constructed a separable metrizable space \(X \) for which \(\text{cmp} X \neq \text{def} X \) (see [2]).

REFERENCES

Institute of Mathematics, University of Tsukuba, Sakura-mura, Niihari-gun, Ibaraki, 305, Japan