Quotients of tangential $k$-blocks
HTML articles powered by AMS MathViewer
- by Geoffrey Whittle
- Proc. Amer. Math. Soc. 102 (1988), 1088-1098
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934895-4
- PDF | Request permission
Abstract:
A tangential $k$-block over $GF(q)$ is a simple matroid representaba over $GF(q)$ with critical exponent $k + 1$ for which every proper loopless minor has critical exponent at most $k$. Such matroids are of central importance in the critical problem of Crapo and Rota. In this paper we provide sufficient conditions for a quotient of a tangential $k$-block over $GF(q)$ to be also a tangential $k$-block over $GF(q)$. This enables us to show that there exist rank $r$ supersolvable tangential $k$-blocks over $GF(q)$ exactly when ${q^k} \geq r \geq k + 1$.References
- Tom Brylawski, Modular constructions for combinatorial geometries, Trans. Amer. Math. Soc. 203 (1975), 1–44. MR 357163, DOI 10.1090/S0002-9947-1975-0357163-6
- Tom Brylawski and James Oxley, Several identities for the characteristic polynomial of a combinatorial geometry, Discrete Math. 31 (1980), no. 2, 161–170. MR 583215, DOI 10.1016/0012-365X(80)90032-1
- Henry H. Crapo and Gian-Carlo Rota, On the foundations of combinatorial theory: Combinatorial geometries, Preliminary edition, The M.I.T. Press, Cambridge, Mass.-London, 1970. MR 0290980
- Richard P. Stanley, Modular elements of geometric lattices, Algebra Universalis 1 (1971/72), 214–217. MR 295976, DOI 10.1007/BF02944981
- R. P. Stanley, Supersolvable lattices, Algebra Universalis 2 (1972), 197–217. MR 309815, DOI 10.1007/BF02945028
- D. J. A. Welsh, Matroid theory, L. M. S. Monographs, No. 8, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0427112
- Dominic Welsh, Colouring problems and matroids, Surveys in combinatorics (Proc. Seventh British Combinatorial Conf., Cambridge, 1979) London Math. Soc. Lecture Note Ser., vol. 38, Cambridge Univ. Press, Cambridge-New York, 1979, pp. 229–257. MR 561312
- D. J. A. Welsh, Colourings, flows and projective geometry, Nieuw Arch. Wisk. (3) 28 (1980), no. 2, 159–176. MR 582924
- Geoff Whittle, Modularity in tangential $k$-blocks, J. Combin. Theory Ser. B 42 (1987), no. 1, 24–35. MR 872405, DOI 10.1016/0095-8956(87)90060-8 —, Some aspects of the critical problem for matroids, Ph.D. Thesis, Univ. of Tasmania, 1985.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 1088-1098
- MSC: Primary 05B35
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934895-4
- MathSciNet review: 934895