An elementary section of a bundle
HTML articles powered by AMS MathViewer
- by A. Rigas
- Proc. Amer. Math. Soc. 102 (1988), 1099-1100
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934896-6
- PDF | Request permission
Abstract:
We use the Cayley algebra and triality to provide an explicit section of a principal ${G_2}$-bundleover ${S^7}$. This section is the basic ingredient for a direct, elementary, proof that ${\pi _6}{G_2} \cong {{\mathbf {Z}}_3},{\pi _6}SU(3) \cong {{\mathbf {Z}}_6}$ and ${\pi _6}{S^3} \cong {{\mathbf {Z}}_{12}}$References
- É. Cartan, Le principe de dualité et la théorie des groupes simples et semi-simples, Bull. Sci. Math. 49 (1925), 361-374.
- Reese Harvey and H. Blaine Lawson Jr., Calibrated geometries, Acta Math. 148 (1982), 47–157. MR 666108, DOI 10.1007/BF02392726
- Mamoru Mimura, The homotopy groups of Lie groups of low rank, J. Math. Kyoto Univ. 6 (1967), 131–176. MR 206958, DOI 10.1215/kjm/1250524375
- Ian R. Porteous, Topological geometry, 2nd ed., Cambridge University Press, Cambridge-New York, 1981. MR 606198, DOI 10.1017/CBO9780511623943
- George W. Whitehead, Elements of homotopy theory, Graduate Texts in Mathematics, vol. 61, Springer-Verlag, New York-Berlin, 1978. MR 516508, DOI 10.1007/978-1-4612-6318-0
- Jean-Pierre Serre, Groupes d’homotopie et classes de groupes abéliens, Ann. of Math. (2) 58 (1953), 258–294 (French). MR 59548, DOI 10.2307/1969789
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 102 (1988), 1099-1100
- MSC: Primary 55R10; Secondary 17A35, 55Q52
- DOI: https://doi.org/10.1090/S0002-9939-1988-0934896-6
- MathSciNet review: 934896