Faithful abelian groups of infinite rank
HTML articles powered by AMS MathViewer
- by Ulrich Albrecht
- Proc. Amer. Math. Soc. 103 (1988), 21-26
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938637-8
- PDF | Request permission
Abstract:
Let $B$ be a subgroup of an abelian group $G$ such that $G/B$ is isomorphic to a direct sum of copies of an abelian group $A$. For $B$ to be a direct summand of $G$, it is necessary that $G$ be generated by $B$ and all homomorphic images of $A$ in $G$. However, if the functor $\operatorname {Hom} (A, - )$ preserves direct sums of copies of $A$, then this condition is sufficient too if and only if $M{ \otimes _{E(A)}}A$ is nonzero for all nonzero right $E(A)$-modules $M$. Several examples and related results are given.References
- Ulrich Albrecht, A note on locally $A$-projective groups, Pacific J. Math. 120 (1985), no. 1, 1–17. MR 808925
- Ulrich Albrecht, Baer’s lemma and Fuchs’s problem 84a, Trans. Amer. Math. Soc. 293 (1986), no. 2, 565–582. MR 816310, DOI 10.1090/S0002-9947-1986-0816310-7
- David M. Arnold, Finite rank torsion free abelian groups and rings, Lecture Notes in Mathematics, vol. 931, Springer-Verlag, Berlin-New York, 1982. MR 665251 —, Notes on abelian groups flat over $E(A)$, unpublished manuscript.
- D. M. Arnold and E. L. Lady, Endomorphism rings and direct sums of torsion free abelian groups, Trans. Amer. Math. Soc. 211 (1975), 225–237. MR 417314, DOI 10.1090/S0002-9947-1975-0417314-1
- D. M. Arnold and C. E. Murley, Abelian groups, $A$, such that $H\textrm {om}(A,—)$ preserves direct sums of copies of $A$, Pacific J. Math. 56 (1975), no. 1, 7–20. MR 376901
- Reinhold Baer, Abelian groups without elements of finite order, Duke Math. J. 3 (1937), no. 1, 68–122. MR 1545974, DOI 10.1215/S0012-7094-37-00308-9
- R. A. Beaumont and R. S. Pierce, Torsion-free rings, Illinois J. Math. 5 (1961), 61–98. MR 148706
- Manfred Dugas and Rüdiger Göbel, Every cotorsion-free ring is an endomorphism ring, Proc. London Math. Soc. (3) 45 (1982), no. 2, 319–336. MR 670040, DOI 10.1112/plms/s3-45.2.319
- László Fuchs, Infinite abelian groups. Vol. II, Pure and Applied Mathematics. Vol. 36-II, Academic Press, New York-London, 1973. MR 0349869 H. P. Goeters and J. R. Reid, On the $p$-ranks of $\operatorname {Hom} (A,B)$, preliminary report.
- B. L. Osofsky, Rings all of whose finitely generated modules are injective, Pacific J. Math. 14 (1964), 645–650. MR 161886 J. J. Rotman, Homological algebra, Academic Press, London and New York, 1982.
- P. Schultz, The endomorphism ring of the additive group of a ring, J. Austral. Math. Soc. 15 (1973), 60–69. MR 0338218
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 21-26
- MSC: Primary 20K20; Secondary 20K30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938637-8
- MathSciNet review: 938637