THE SCHUR SUBGROUP OF THE BRAUER GROUP
OF CYCLOTONIC RINGS OF INTEGERS

C. RIEHM

(Communicated by Bhama Srinivasan)

ABSTRACT. Let K be a finite abelian extension of the rational numbers \mathbb{Q}. Let S be a finite set of primes of K including the infinite ones, and let \mathfrak{o} be the ring of S-integers in K. Then the Schur subgroup $S(\mathfrak{o})$ of the Brauer group $B(\mathfrak{o})$ is defined, in analogy with $S(K)$, via representations of finite groups on finitely generated projective \mathfrak{o}-modules. It is easy to see that $S(\mathfrak{o}) \subseteq S(K) \cap B(\mathfrak{o})$. We shall show that there is equality in the case of K a purely cyclotomic extension $\mathbb{Q}(\varepsilon_m)$ of \mathbb{Q} (where ε_m is an mth root of 1).

Introduction. For any commutative ring \mathfrak{o}, one can define the Schur subgroup $S(\mathfrak{o})$ of the Brauer group $B(\mathfrak{o})$ as follows: Let G be a finite group, and $\rho: G \to \text{GL}(M)$ a homomorphism of G to the automorphism group of a projective module M over \mathfrak{o} with the property that the \mathfrak{o}-span ρG of ρG is an Azumaya algebra over \mathfrak{o}. In this case we denote the Brauer class $[\rho G]$ by $\beta(\rho)$. Then $S(\mathfrak{o})$ consists of the Brauer classes $\beta(\rho)$ as ρ runs over all such homomorphisms of all finite groups G. Alternatively, one can define $S(\mathfrak{o})$ to be the set of all Brauer classes $[\Lambda]$ where Λ runs over all Azumaya algebras which are homomorphic images of some group algebra $\mathfrak{o}G$ (G finite). It is easy to see, as in the case $\mathfrak{o} = \text{a field}$, that $S(\mathfrak{o})$ is indeed a subgroup of $B(\mathfrak{o})$ (see [D-M 1]).

Suppose now that the canonical map $B(\mathfrak{o}) \to B(K)$ is injective (this is the case if \mathfrak{o} is a Dedekind domain, e.g., see [O-S]). Then it is clear that

$$S(\mathfrak{o}) \subseteq S(K) \cap B(\mathfrak{o})$$

and E. B. Williams has asked for conditions under which there is equality in the following situation: K is a finite abelian extension of \mathbb{Q}, and \mathfrak{o} is the ring of S-integers in K for a finite set of places S of K. We shall prove the following theorem.

THEOREM. Let K be a cyclotomic field $\mathbb{Q}(\varepsilon_m)$ where m is a positive integer, and let S be any finite set of primes (containing the infinite primes). Then if \mathfrak{o} is the ring of S-integers,

$$S(\mathfrak{o}) = S(K) \cap B(\mathfrak{o}).$$

For other results on $S(\mathfrak{o})$, see [D-M 1 and D-M 2].
The proof. For any abelian group A and any positive integer q, let A_q denote the q-primary subgroup of A—that is, the subgroup of A of those elements whose order divides some power of q.

Let $K = \mathbb{Q}(\varepsilon_m)$. We may assume that $m \neq 2 \pmod{4}$. We must show that an arbitrary element $a \in S(K) \cap B(\mathcal{O})$ is in $S(\mathcal{O})$. Since $B(K)$ is a torsion group, we may write $a = \sum \alpha_q$ where q runs over the rational primes and α_q is the q-primary component of a. This allows us to assume that $\alpha = \alpha_q$, i.e. that α is q-primary. By the “root of unity theorem” of Benard (see Theorem 6.1, [Y]), we can also assume that $q|2m$.

If p is any rational prime, possibly ∞, and L is an algebraic number field, then the p-local invariants of a Brauer class $\gamma \in B(L)$ are, by definition, the Hasse invariants (with values in \mathbb{Q}/\mathbb{Z}) of γ at the primes of L which lie above p—see Definition 6.4, [Y]. The Benard-Schacher theorem says that the Hasse invariants of each γ in $S(K)$ are “uniformly distributed”, i.e. for each p, the p-local invariants of γ are determined (in a very explicit way) by any one of them (Theorem 6.1, [Y]). The p-local component of γ is defined to be the Brauer class $\gamma(p)$ whose p-invariants coincide with those of γ and whose other Hasse invariants are 0. Thus $\gamma = \sum_p \gamma(p)$.

Let M/L be a Galois extension with Galois group $\mathcal{G}(M/L)$. We shall denote the cohomology group $H^2(\mathcal{G}(M/L), M^*)$ by $H^2(M/L)$ and identify it with a subgroup of $B(L)$ in the usual way. Let $\mu(M)$ denote the group of roots of unity in M. There is a canonical map of $H^2(\mathcal{G}(M/L), \mu(M))$ into $H^2(\mathcal{G}(M/L), M^*)$ whose image will be denoted by $H^2_\mathcal{O}(M/L)$. The Brauer-Witt theorem (Chapter 3, [Y]) says that $S(L)$ is the union of all $H^2_\mathcal{O}(M/L)$ as M runs over all cyclotomic extensions $M = L(\varepsilon_n)$ of L.

Suppose that $q | m$.

Lemma 1. The p-components $\alpha(p)$ of α are also in $S(K) \cap B(\mathcal{O})$. Moreover $\alpha(p) = K \otimes \beta$ where $\beta \in H^2_\mathcal{O}(\mathbb{Q}(\varepsilon_{qr}))/\mathbb{Q}(\varepsilon_{qr}))$ is a p-local $(\beta = \beta(p))$ Brauer class of $\mathbb{Q}(\varepsilon_{qr})$.

Here $K \otimes \beta$ stands for the Brauer class of K obtained from β by “restriction” (extension of scalars).

Proof. By a theorem of Janusz [J], there is a $\beta \in S(\mathbb{Q}(\varepsilon_{qr}))$ such that $\alpha = K \otimes \beta$. Benard, Schacher, and Yamada have characterized $S(\mathbb{Q}(\varepsilon_{qr}))$ in terms of Hasse invariants (pp. 135–139, [Y]). Namely $S(\mathbb{Q}(\varepsilon_{qr}))$ consists of all uniformly distributed Brauer classes in $B(\mathbb{Q}(\varepsilon_{qr}))$ whose p-local invariants have order dividing $(p - 1, q^r)$ for each (rational) prime p; there is one exception: if $q = 2$ and $p \equiv -1 \pmod{2^r}$, then the p-local invariant is 0. It follows that $S(\mathbb{Q}(\varepsilon_{qr}))$ is the direct sum of its p-local components—the latter are the (cyclic) subgroups of $S(\mathbb{Q}(\varepsilon_{qr}))$ which are 0 locally at all primes of $\mathbb{Q}(\varepsilon_{qr})$ not above p. Therefore if we express β as the sum $\sum \beta(p)$ of its p-local components, each component lies in $S(\mathbb{Q}(\varepsilon_{qr}))$ and furthermore we can assume it is 0 if the corresponding p-component $\alpha(p)$ of α is 0. It is also clear that $\alpha(p) = K \otimes \beta(p)$ and, in particular that $\alpha(p) \in S(K)$. Since $B(\mathcal{O})$ consists of the classes in $B(K)$ whose Hasse invariants are 0 outside of \mathcal{S} (cf. Theorem 6.33 and Proposition 6.34, [O-S]), it follows at once that $\alpha(p) \in S(K) \cap B(\mathcal{O})$. It follows from Lemma 8.5 and Theorem 8.6, [Y], that $\beta(p) \in H^2_\mathcal{O}(\mathbb{Q}(\varepsilon_{pq^n}))/\mathbb{Q}(\varepsilon_{qr}))$. This finishes the proof of Lemma 1.

By Lemma 1, we can now assume that α is p-local as well being q-primary.
LEMMA 2. The cohomology class α contains a cocycle $f \in Z^2(K(\varepsilon_p)/K)$ all of whose values are in $\langle \varepsilon_{q^r} \rangle$.

PROOF. Because of our identifications,
$$H^2_c(Q(\varepsilon_{pq^r})/Q(\varepsilon_{q^r})) \subseteq H^2_c(Q(\varepsilon_{pm})/Q(\varepsilon_{q^r})).$$
Therefore since $\alpha = K \otimes \beta$ where β is as in Lemma 1, we get $\alpha \in H^2_c(K(\varepsilon_p)/K)$ and so Lemma 2 follows at once since α is q-primary.

LEMMA 3. If $\alpha \neq 0$, then p lies below a prime of S and does not divide m.

PROOF. If p were a divisor of m, then K would contain ε_p resp. ε_4 if $p = 2$; by Proposition 4.8 and Corollary 5.4 of [Y], the Schur subgroup of a completion K_p of K, at any prime p lying over p, would then be trivial, so α also would be trivial. On the other hand, the fact that $\alpha \in B(\mathfrak{o})$ means exactly that its local components are 0 at all p not in S. \(\square \)

We now define A be the the crossed-product algebra
$$A = (K(\varepsilon_p)/K, f) = \sum_{\sigma \in \mathcal{F}} K(\varepsilon_p)u_{\sigma}$$
where $\mathcal{F} = \mathcal{F}(K(\varepsilon_p)/K)$. Of course $A \in \alpha$. Similarly we define the order
$$\Lambda = (\mathfrak{o}[\varepsilon_p]/\mathfrak{o}, f) = \sum_{\sigma \in \mathcal{F}} \mathfrak{o}[\varepsilon_p]u_{\sigma}.$$
Thus $A = K \otimes \Lambda$.

LEMMA 4. Λ is an Azumaya algebra over \mathfrak{o} with Brauer class $[\Lambda] = \alpha$.

PROOF. Let p be any prime not in S. Then
$$\hat{\delta}_p \otimes \Lambda = \sum_{\sigma \in \mathcal{F}} \hat{\delta}_p \otimes \mathfrak{o}[\varepsilon_p]u_{\sigma}$$
is an $\hat{\delta}_p$-order in the K_p-algebra
$$K_p \otimes A = \sum_{\sigma \in \mathcal{F}} K_p \otimes K(\varepsilon_p)u_{\sigma}.$$
Let L_1, \ldots, L_g be the completions of $L = K(\varepsilon_p)$ at the primes lying above p. Then the K_p-algebra $K_p \otimes K(\varepsilon_p)$ is (isomorphic to) the direct sum $L_1 \oplus \cdots \oplus L_g$. We shall now show that $\hat{\delta}_p \otimes o[\varepsilon_p]$ is likewise the direct sum of the rings of integers \mathfrak{D}_i of the L_i, after identifying by means of this isomorphism.

Since $\hat{\delta}_p \otimes o[\varepsilon_p] \subseteq \bigoplus \mathfrak{D}_i$ and both are $\hat{\delta}_p$-orders on a separable algebra, it suffices to show that they have the same discriminant (cf. [MO]). Now the discriminant of $\hat{\delta}_p \otimes o[\varepsilon_p]$ is $d(o[\varepsilon_p]/o)\hat{\delta}_p$ where $d(o[\varepsilon_p]/o)$ is the discriminant of $o[\varepsilon_p]/o$. The discriminant of $\bigoplus \mathfrak{D}_i$ is the product of the $d(\mathfrak{D}_i/\hat{\delta}_p)$ and thus is equal to $d(o[\varepsilon_p]/o)\hat{\delta}_p$ by Proposition 5, Chapter I, [C-F].

Let $\mathcal{F}_1 \subseteq \mathcal{F}$ be the stabilizer of the summand L_1—it is the decomposition group of the prime belonging to L_1. Consider the crossed-product order $\Lambda_1 = (\mathcal{D}_1/\hat{\delta}_p, f_1)$ where f_1 is the restriction of f to \mathcal{F}_1. Now f_1 is split since f splits at p. Since p does not ramify in \mathcal{D}_1, Λ_1 is a maximal order by a theorem of Auslander and Goldman—see Theorem 28.5, [C-RI]. Since $\hat{\delta}_p \otimes o[\varepsilon_p]$ is the direct sum of the \mathfrak{D}_i, it
follows that Λ is also maximal by a theorem of Merklen (Proposition 1, (iv), [M]). Since $K \otimes \Lambda = A$ and the local Hasse invariants of A are all 0 at the primes of \mathfrak{o} (i.e. the primes $p \not\in S$), it follows that Λ is an Azumaya algebra over \mathfrak{o} and $\Lambda \in \alpha$ (cf. [D-I]). □

Thus to prove our theorem, it suffices to prove that $\Lambda \in S(\mathfrak{o})$.

Let G be the extension of S by $\mu(L)$, corresponding to the cocycle f. Then we can view G as the group generated by $\mu(L)$ and the u_{σ} in Λ. Moreover it is clear that G spans Λ over \mathfrak{o}, and so $\Lambda \in S(\mathfrak{o})$ as desired. □

REFERENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS, McMASTER UNIVERSITY, HAMILTON, ONTARIO L8S 4K1, CANADA