The Schur subgroup of the Brauer group of cyclotomic rings of integers
HTML articles powered by AMS MathViewer
- by C. Riehm
- Proc. Amer. Math. Soc. 103 (1988), 27-30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938638-X
- PDF | Request permission
Abstract:
Let $K$ be a finite abelian extension of the rational numbers $\mathbb {Q}$. Let ${\mathbf {S}}$ be a finite set of primes of $K$ including the infinite ones, and let $\mathfrak {o}$ be the ring of ${\mathbf {S}}$-integers in $K$. Then the Schur subgroup $S(\mathfrak {o})$ of the Brauer group $B(\mathfrak {o})$ is defined, in analogy with $S(K)$, via representations of finite groups on finitely generated projective $\mathfrak {o}$-modules. It is easy to see that $S(\mathfrak {o}) \subseteq S(K) \cap B(\mathfrak {o})$. We shall show that there is equality in the case of $K$ a purely cyclotomic extension $\mathbb {Q}({\varepsilon _m})$ of $\mathbb {Q}$ (where ${\varepsilon _m}$ is an $m$th root of 1).References
- J. W. S. Cassels and A. Frohlich, Algebraic number theory, Thompson Book, Washington, D. C., 1967.
- Charles W. Curtis and Irving Reiner, Methods of representation theory. Vol. I, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1981. With applications to finite groups and orders. MR 632548
- Frank DeMeyer and Edward Ingraham, Separable algebras over commutative rings, Lecture Notes in Mathematics, Vol. 181, Springer-Verlag, Berlin-New York, 1971. MR 0280479
- F. DeMeyer and R. Mollin, The Schur group of a commutative ring, J. Pure Appl. Algebra 35 (1985), no. 2, 117–122. MR 775464, DOI 10.1016/0022-4049(85)90034-9
- Frank DeMeyer and Richard Mollin, The Schur group, Orders and their applications (Oberwolfach, 1984) Lecture Notes in Math., vol. 1142, Springer, Berlin, 1985, pp. 205–210. MR 812500, DOI 10.1007/BFb0074802
- G. J. Janusz, The Schur group of cyclotomic fields, J. Number Theory 7 (1975), no. 3, 345–352. MR 382234, DOI 10.1016/0022-314X(75)90025-6
- H. Merklen, Hereditary crossed product orders, Pacific J. Math. 74 (1978), no. 2, 391–406. MR 472888
- I. Reiner, Maximal orders, London Mathematical Society Monographs. New Series, vol. 28, The Clarendon Press, Oxford University Press, Oxford, 2003. Corrected reprint of the 1975 original; With a foreword by M. J. Taylor. MR 1972204
- Morris Orzech and Charles Small, The Brauer group of commutative rings, Lecture Notes in Pure and Applied Mathematics, Vol. 11, Marcel Dekker, Inc., New York, 1975. MR 0457422
- Toshihiko Yamada, The Schur subgroup of the Brauer group, Lecture Notes in Mathematics, Vol. 397, Springer-Verlag, Berlin-New York, 1974. MR 0347957
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 27-30
- MSC: Primary 13A20; Secondary 11S25, 12E15, 20C10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938638-X
- MathSciNet review: 938638