On the number of components of a graph related to character degrees
HTML articles powered by AMS MathViewer
- by O. Manz, R. Staszewski and W. Willems
- Proc. Amer. Math. Soc. 103 (1988), 31-37
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938639-1
- PDF | Request permission
Abstract:
We connect two nonlinear irreducible character of a finite group $G$ if their degrees have a common prime divisor. In this paper we show that the corresponding graph has at most three connected components.References
- Bertram Huppert and Norman Blackburn, Finite groups. II, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 242, Springer-Verlag, Berlin-New York, 1982. AMD, 44. MR 650245
- Bomshik Chang and Rimhak Ree, The characters of $G_{2}(q)$, Symposia Mathematica, Vol. XIII (Convegno di Gruppi Abeliani & Convegno di Gruppi e loro Rappresentazioni, INDAM, Rome, 1972) Academic Press, London, 1974, pp. 395–413. MR 0364419
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- D. I. Deriziotis and G. O. Michler, Character table and blocks of finite simple triality groups $^3D_4(q)$, Trans. Amer. Math. Soc. 303 (1987), no. 1, 39–70. MR 896007, DOI 10.1090/S0002-9947-1987-0896007-9
- Hikoe Enomoto, The characters of the finite Chevalley group $G_{2}(q),q=3^{f}$, Japan. J. Math. (N.S.) 2 (1976), no. 2, 191–248. MR 437628, DOI 10.4099/math1924.2.191
- I. Martin Isaacs, Character theory of finite groups, Pure and Applied Mathematics, No. 69, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1976. MR 0460423 —, Coprime group actions fixing all nonlinear irreducible characters, Canad. J. Math. (submitted).
- Olaf Manz, Endliche nicht-auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind, J. Algebra 96 (1985), no. 1, 114–119 (German). MR 808844, DOI 10.1016/0021-8693(85)90042-0
- Olaf Manz, Degree problems. II. $\pi$-separable character degrees, Comm. Algebra 13 (1985), no. 11, 2421–2431. MR 807482, DOI 10.1080/00927878508823281
- Olaf Manz and Reiner Staszewski, Some applications of a fundamental theorem by Gluck and Wolf in the character theory of finite groups, Math. Z. 192 (1986), no. 3, 383–389. MR 845210, DOI 10.1007/BF01164012
- Gerhard O. Michler, A finite simple group of Lie type has $p$-blocks with different defects, $p\not =2$, J. Algebra 104 (1986), no. 2, 220–230. MR 866772, DOI 10.1016/0021-8693(86)90212-7
- William A. Simpson and J. Sutherland Frame, The character tables for $\textrm {SL}(3,\,q)$, $\textrm {SU}(3,\,q^{2})$, $\textrm {PSL}(3,\,q)$, $\textrm {PSU}(3,\,q^{2})$, Canadian J. Math. 25 (1973), 486–494. MR 335618, DOI 10.4153/CJM-1973-049-7
- Robert Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American Mathematical Society, No. 80, American Mathematical Society, Providence, R.I., 1968. MR 0230728
- J. Tits, Algebraic and abstract simple groups, Ann. of Math. (2) 80 (1964), 313–329. MR 164968, DOI 10.2307/1970394
- F. D. Veldkamp, Regular elements in anisotropic tori, Contributions to algebra (collection of papers dedicated to Ellis Kolchin), Academic Press, New York, 1977, pp. 389–424. MR 0463326
- Harold N. Ward, On Ree’s series of simple groups, Trans. Amer. Math. Soc. 121 (1966), 62–89. MR 197587, DOI 10.1090/S0002-9947-1966-0197587-8
- W. Willems, Blocks of defect zero and degree problems, The Arcata Conference on Representations of Finite Groups (Arcata, Calif., 1986) Proc. Sympos. Pure Math., vol. 47, Amer. Math. Soc., Providence, RI, 1987, pp. 481–484. MR 933388, DOI 10.1090/pspum/047.1/933388
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 31-37
- MSC: Primary 20C15
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938639-1
- MathSciNet review: 938639