The middle annihilator conjecture for embeddable rings
HTML articles powered by AMS MathViewer
- by C. Dean
- Proc. Amer. Math. Soc. 103 (1988), 46-48
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938642-1
- PDF | Request permission
Abstract:
It is shown that any ring which can be embedded in an Artinian ring has just finitely many middle annihilator primes. In particular, this proves the middle annihilator conjecture for a large class of Noetherian rings.References
- William D. Blair and Lance W. Small, Embeddings in Artinian rings and Sylvester rank functions, Israel J. Math. 58 (1987), no. 1, 10–18. MR 889970, DOI 10.1007/BF02764668
- A. W. Chatters and C. R. Hajarnavis, Rings with chain conditions, Research Notes in Mathematics, vol. 44, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR 590045 C. Dean and J. T. Stafford, A nonembeddable Noetherian ring, J. Algebra (in press).
- Alfred Goldie and Günter Krause, Strongly regular elements of Noetherian rings, J. Algebra 91 (1984), no. 2, 410–429. MR 769583, DOI 10.1016/0021-8693(84)90112-1 K. R. Goodearl and R. B. Warfield, Jr., in preparation.
- Robert Gordon, Primary decomposition in right noetherian rings, Comm. Algebra 2 (1974), 491–524. MR 360691, DOI 10.1080/00927877408822023
- Arun Vinayak Jategaonkar, Solvable Lie algebras, polycyclic-by-finite groups and bimodule Krull dimension, Comm. Algebra 10 (1982), no. 1, 19–69. MR 674687, DOI 10.1080/00927878208822700
- Günter Krause, Middle annihilators in Noetherian rings, Comm. Algebra 8 (1980), no. 8, 781–791. MR 566421, DOI 10.1080/00927878008822489
- A. H. Schofield, Representation of rings over skew fields, London Mathematical Society Lecture Note Series, vol. 92, Cambridge University Press, Cambridge, 1985. MR 800853, DOI 10.1017/CBO9780511661914
- L. W. Small, Rings satisfying a polynomial identity, Vorlesungen aus dem Fachbereich Mathematik der Universität GH Essen [Lecture Notes in Mathematics at the University of Essen], vol. 5, Universität Essen, Fachbereich Mathematik, Essen, 1980. Written from notes taken by Christine Bessenrodt. MR 601386
- L. W. Small and J. T. Stafford, Regularity of zero divisors, Proc. London Math. Soc. (3) 44 (1982), no. 3, 405–419. MR 656243, DOI 10.1112/plms/s3-44.3.405
- R. B. Warfield Jr., Prime ideals in ring extensions, J. London Math. Soc. (2) 28 (1983), no. 3, 453–460. MR 724714, DOI 10.1112/jlms/s2-28.3.453
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 46-48
- MSC: Primary 16A34
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938642-1
- MathSciNet review: 938642