ABSTRACT. We define matrix representations of Artin groups over a 2-variable Laurent-polynomial ring and show that in the rank 2 case, the representations are faithful. In the special case of Artin’s braid group, our representation is a version of the Burau representation and our faithfulness theorem is a generalization of the well-known fact that the Burau representation of B_3 is faithful.

In [4], Brieskorn and Saito coined the phrase “Artin groups” to denote a certain class of groups, defined by generators and relations, which stand in relationship to arbitrary Coxeter groups much as Artin’s braid group B_n [1] stands in relationship to the symmetric group S_n. One of the nice features of Coxeter groups is that they have “standard” representations [6] as groups of matrices over the real numbers preserving a suitably defined bilinear form and that, moreover, these representations are faithful (see [3]). Our purpose here is to show the existence of analogous matrix representations of Artin groups over Laurent-polynomial rings preserving similarly defined sequilinear forms. Unfortunately, except in the simplest cases, the question of faithfulness of these Artin group representations remains open.

In §1, we define Artin groups G_M (by representation), a Hermitian form J, and unitary reflections for each given generator of G_M; these are defined using a given Coxeter matrix M. In §2, we show that the reflections associated to generators of G_M define a matrix representation of G_M (Theorem 1) and that when the presentation of G_M involves 2 generators, this representation is faithful (Theorem 2). We note that in the special case of the braid groups our representation is a version of the Burau representation ([5] or see [2]). The results below are first, a generalization to arbitrary Artin groups of the author’s observation [10] that the Burau representation of B_n is unitary and second, a generalization to arbitrary rank 2 Artin groups of the well-known fact (see [9 or 2]) that the Burau representation of B_3 is faithful.

1. Definitions. Let n be a positive integer. A (rank n) Coxeter matrix M will be an $n \times n$ symmetric matrix $M = [m(i,j)]$ each of whose entries $m(i,j)$ is a positive integer or ∞ such that $m(i,j) = 1$ if and only if $i = j$. Out of a Coxeter matrix M, we shall build some presentations and some forms.

To define the presentations, let $X = \{x_1, \ldots, x_n\}$ be a finite set. For m a positive integer, define the symbol $\langle xy \rangle^m$ by the formula

$$\langle xy \rangle^m = \begin{cases} (xy)^k & \text{if } m = 2k, \\ (xy)^k x & \text{if } m = 2k + 1. \end{cases}$$

Received by the editors February 5, 1987.

1980 Mathematics Subject Classification (1985 Revision). Primary 20F36; Secondary 20H10.

©1988 American Mathematical Society
0002-9939/88 $1.00 + $.25 per page

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Let M be an $n \times n$ Coxeter matrix. G_M will denote the abstract group defined by generators $X = \{x_1, \ldots, x_n\}$ and relations all \(x_i x_j x_i = x_j x_i x_j \) for $1 \leq i < j \leq n$. Throughout, the case $m(i, j) = \infty$ will stand for “no relation”. G_M is the Artin group determined by M. W_M will denote G_M modulo the addition relations all $x_i^2 = 1$. Note that in the presence of the relations $x_i^2 = 1$, the defining relations of G_M take the form $(x_i x_j)^{m(i, j)} = 1$. W_M is called the Coxeter group determined by M. For the basic properties of Coxeter groups, see [3 or 6]. For a study of Artin groups and their relationship to Coxeter groups, see [4].

We define a symmetric bilinear form J_1 associated to W_M and a Hermitian form J associated to G_M. To motivate the definitions of J, we begin by recalling the (well-known—see [3]) definition of $J_1 = J_1(M)$: J_1 is the $n \times n$ matrix $[c_{ij}]$ where $c_{ij} = -2 \cos(\pi/m(i, j))$. Here, we adopt the convention that $\pi/\infty = 0$ so that if $m(i, j) = \infty$ then $c_{ij} = -2$. Note that each $c_{ii} = 2$. Let V denote an n-dimensional vector space over \mathbb{R} with basis $\{e_1, \ldots, e_n\}$. Identify each $v \in V$ with the column vector consisting of the coordinates of v with respect to the basis $\{e_1, \ldots, e_n\}$ of V. With this convention, if $v \in V$, let v' denote the transpose of v and, for $u, v \in V$, define $\langle u, v \rangle_1 = u' J_1 v$. Thus, J_1 defines a symmetric bilinear form on V. We use J_1 to define a matrix representation ρ_1 of W_M on V: if $v \in V$ and $x_i \in X$ define $(\rho_1(x_i))(v) = v - \langle e_i, v \rangle_1 e_i$.

It is well known (again see [3]) that ρ_1 is a faithful linear representation of W_M.

To define J, let Λ denote the Laurent-polynomial ring $\mathbb{R}[s, s^{-1}, t, t^{-1}]$, where s and t are indeterminates over \mathbb{R}. Define $J = J(M)$ to be the $n \times n$ matrix $[a_{ij}]$ over Λ, where

$$
a_{ij} = \begin{cases}
-2s \cos(\pi/m(i, j)), & i < j, \\
1 + st, & i = j, \\
-2t \cos(\pi/m(i, j)), & i > j.
\end{cases}
$$

Note that J_1 may be obtained from J by substituting $s = t = 1$.

To define analogues of the representation ρ_1 of W_M defined above, we introduce an analogue of complex conjugation in the Laurent-polynomial ring Λ: if $x \in \mathbb{R}$ then, as usual, $\overline{x} = x$; also, $\overline{s} = s^{-1}$ and $\overline{t} = t^{-1}$, extended to Λ additively and multiplicatively. Note that if complex numbers of norm 1 are substituted for s and t then we recover ordinary complex conjugation.

We extend the definition of conjugation to matrices entrywise and, if A is a matrix over Λ, we define $A^* = \overline{A'}$. For example, note that $J^* = s^{-1} t^{-1} J$.

Let V denote a free Λ-module with basis $\{e_1, \ldots, e_n\}$ and, as above, identify each $v \in V$ with its column vector of coordinates. If $u, v \in V$ define $\langle u, v \rangle = u^* J v$. Finally, we define ρ: if $v \in V$ and $x_i \in X$ define

$$(\rho(x_i))(v) = v - \langle e_i, v \rangle e_i.$$

We shall see below that ρ provides a matrix representation of the Artin group G_M.

Note that $\langle \rho(x_i)(v), s^{-1} t^{-1} (e_i, v) e_i \rangle = v$. It follows that each $\rho(x_i)$ acts invertibly on V. In fact, each $\rho(x_i)$ is a pseudo-reflection in the sense of [3]. Also, for each $x_i \in X$ and each $u, v \in V$, we have

$$\langle \rho(x_i)(u), \rho(x_i)(v) \rangle = \langle u, v \rangle.$$

Combining this observation with Theorem 1 below, we conclude that ρ is a representation of G_M in a group of unitary matrices.
2. Theorems. In this section, we show that the function ρ defined (on generators) above extends to a representation of the Artin groups G_M and that when $n = 2$, this representation is faithful. (The second result includes the fact that the Burau representation of B_3 is faithful—see [9 or 2].)

To prove that ρ defines a representation of G_M, we need to show that ρ respects the defining relations of G_M. An important observation is the following

Lemma. $\det J \neq 0$.

Proof. In $\det J$, the coefficients of $(st)^n$ is 1, so $\det J \neq 0$. □

In particular, $(-, -)$ is nondegenerate: if $u \in V$ satisfies $\langle u, v \rangle = 0$ for all $v \in V$, then $u = 0$.

At this point, it is convenient to introduce the field-of-quotients F of Λ. F is a rational function field over R. Extend the definition of conjugation to F. Letting V_F denote the F-vector space $V \otimes_A F$, extend $(-, -)$ to V_F and also view ρ as a linear transformation on V_F. Note that since $(-, -)$ is nondegenerate, if $u \in V_F$ satisfies $u \neq 0$, then $u^\perp = \{v \in V_F | \langle u, v \rangle = 0\}$ is an $(n-1)$-dimensional subspace of V_F. Also note that $\rho(e_i)$ is the identity on e_i^\perp. Given i, j satisfying $1 \leq i < j \leq n$, let V_{ij} denote the subspace of V_F spanned by e_i and e_j, and let $V_{ij}^\perp = e_i^\perp \cap e_j^\perp$. We need the following

Lemma. $V_{ij} \cap V_{ij}^\perp = \{0\}$.

Proof. Let $v = v_i e_i + v_j e_j \in V_{ij}$ where $v_i, v_j \in \Lambda$. If $v \in V_{ij}^\perp$, then $\langle e_i, v \rangle = \langle e_j, v \rangle = 0$ which leads to the following system of linear equations:

\[
\begin{align*}
sv_i (1 + st) - 2v_j s \cos(\pi/m) &= 0, \\
-2v_i t \cos(\pi/m) + v_j (1 + st) &= 0,
\end{align*}
\]

where m denotes $m(i, j)$. Since the determinant of the coefficient matrix is $\neq 0$ in Λ, the only solution is $v_i = v_j = 0$, so $v = 0$, as required. □

Noting that the defining relations of G_M each involve exactly two generators, in order to show that ρ respects the defining relations of G_M, it suffices to show that each $\langle x_i x_j \rangle^{m(i, j)} = \langle x_j x_i \rangle^{m(i, j)}$ holds under ρ on the subspace V_{ij} of V_F.

Let a denote the matrix of x_i and b the matrix of x_j with respect to the basis e_i, e_j of V_{ij}. Writing m for $m(i, j)$, it follows that

\[
a = \begin{pmatrix}
-st & 2s \cos(\pi/m) \\
0 & 1
\end{pmatrix}, \quad b = \begin{pmatrix}
1 & 0 \\
2t \cos(\pi/m) & -st
\end{pmatrix}.
\]

Thus it suffices to prove

Lemma. The matrices a and b above satisfy $(ab)^m = (ba)^m$.

Proof. Adjoin a square root q of st^{-1} to F and let

\[
R = \begin{pmatrix}
0 & q \\
-q^{-1} & 0
\end{pmatrix}.
\]

It is easy to check that $R^2 = I$ and $b = RaR$. It follows that $(ab)^m = (ba)^m$ if and only if $(aR)^m = (Ra)^m$. Clearly, $s^{-1}q(aR)$ and $s^{-1}q(Ra)$ have determinant 1 and trace $2 \cos(\pi/m)$. It follows that $(s^{-1}q(aR))^m = (s^{-1}q(Ra))^m = -I$, as required. □

Thus we have the following theorem.
THEOREM 1. The function \(\rho \) extends to a representation of \(G_M \) in \(GL_n(\Lambda) \).

PROOF. Each relation \((x_i x_j)^m(i,j) = (x_j x_i)^m(i,j) \) holds under \(\rho \) on \(V_{ij} \) by the lemma and therefore on all of \(V_F \) since \(x_i \) and \(x_j \) are each the identity on \(V_{ij}^\perp \). \(\square \)

Except in the two-generator case, we do not know if the representation \(\rho \) is faithful. Here is the proof in the two-generator case. Let \(A \) and \(B \), respectively, denote the matrices obtained by substituting \(s = 1 \) and \(t = -1 \) in \(a \) and \(b \) above.

LEMMA. The matrix group generated by \(A \) and \(B \) has presentation \((AB)^m = (BA)^m \) and

\[
(AB)^m = 1 \quad (m \text{ even}),
\]
\[
(AB)^{2m} = 1 \quad (m \text{ odd}).
\]

PROOF. View \(A \) and \(B \) as linear fractional transformations acting on the upper half-plane. Using the fact that the matrix \(AB \) has determinant 1 and trace \(2 \cos(\pi(1 - (2/m))) \), it follows that \(AB \) satisfies \((AB)^m = (-1)^m I \). Thus, it suffices to prove that the group of linear fractional transformations generated by \(A \) and \(B \) has defining relations \((AB)^m = (BA)^m \) and \((AB)^m = 1 \).

We prove this last fact by exhibiting the group generated by \(A \) and \(B \) as a subgroup of finite index in a suitable triangle group. Let \(R_1, R_2 \) and \(R_3 \) be transformations of the upper half-plane defined by

\[
R_1 = \text{reflection in the imaginary axis } x = 0,
\]
\[
R_2 = \text{reflection in the axis } x = \cos(\pi/m),
\]
\[
R_3 = \text{reflection in the unit circle}.
\]

Then \(R_1, R_2 \) and \(R_3 \) generate a \((2, m, \infty)\) triangle group with presentation (see [7]):

\[
R_1^2 = R_2^2 = R_3^2 = (R_1 R_3)^2 = (R_2 R_3)^m = 1.
\]

Noting that \(R_1(z) = -\bar{z}, R_2(z) = -\bar{z} + 2 \cos(\pi/m) \) and \(R_3(z) = 1/\bar{z} \), it follows that, as linear fractional transformations, \(A = R_2 R_1 \) and \(B = R_3 R_1 R_2 R_3 \). It can be checked that the subgroup of the triangle group generated by \(A \) and \(B \) is normal and has index 2 when \(m \) is odd and index 4 when \(m \) is even. A routine application of the Reidemeister-Schreier algorithm produces the required presentation of the group generated by \(A \) and \(B \). \(\square \)

THEOREM 2. The group of matrices generated by \(a \) and \(b \) has presentation \(\langle ab \rangle^m = \langle ba \rangle^m \).

PROOF. By the Lemma, the substitution produces a group with a presentation consisting of the desired relation together with a further relation \(c = 1 \) where \(c = (ab)^m \) when \(m \) is even and \(c = (ab)^{2m} \) when \(m \) is odd. In either case, \(c \) is a central element in the group defined by \(\langle ab \rangle^m = \langle ba \rangle^m \). It follows that any additional relation between \(a \) and \(b \) must be a nonzero power of \(c \). But any nonzero power of \(c \) has determinant a nonzero power of \(-st \) and is therefore not the identity. Thus the matrix group generated by \(a \) and \(b \) has presentation \(\langle ab \rangle^m = \langle ba \rangle^m \), as desired. \(\square \)
3. **Remarks.** The (reduced) Burau representation of B_n (see [2]) may be obtained by substituting $s = 1$ in the representation ρ of B_n that arises above. In fact, the representation ρ itself is equivalent to the Burau representation: it is possible to conjugate the image of ρ by a diagonal matrix that, in each $\rho(x_i)$, "moves the t's above the diagonal" and "leaves the s's alone". The matrices that result have the property that their entries depend only on the product st. A similar conjugation is possible whenever the Coxeter graph Γ_M of M is a forest (Γ_M has vertices X and an edge connecting x_i and x_j provided $m(i,j) \geq 3$). In these cases, the representations ρ of G_M is conjugate to a representation over the Laurent-polynomial ring $R[st,(st)^{-1}] \subseteq \Lambda$. In the case of B_n, the representation that results is the Burau representation.

In general, the question of the faithfulness of ρ remains open. The only known cases seem to be those that follow easily from Theorem 2: G_M is a direct product of rank 1 or 2 Artin groups (equivalently, Γ_M is a disjoint union of vertices and pairs of vertices connected by an edge). Much effort has been devoted (unsuccessfully) to trying to determine whether or not the Burau representation of B_4 is faithful. One other case that might be worth investigating is M defined by each $m(i,j) = \infty$, so that G_M is a free group.

REFERENCES