Matrix representations of Artin groups
HTML articles powered by AMS MathViewer
- by Craig C. Squier
- Proc. Amer. Math. Soc. 103 (1988), 49-53
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938643-3
- PDF | Request permission
Abstract:
We define matrix representations of Artin groups over a $2$-variable Laurent-polynomial ring and show that in the rank 2 case, the representations are faithful. In the special case of Artin’s braid group, our representation is a version of the Burau representation and our faithfulness theorem is a generalization of the well-known fact that the Burau representation of ${B_3}$ is faithful.References
- E. Artin, Theorie der Zopfe, Abh. Math. Sem. Univ. Hamburg 9 (1925), 47-72.
- Joan S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1974. MR 0375281
- N. Bourbaki, Éléments de mathématique. Fasc. XXXVIII: Groupes et algèbres de Lie. Chapitre VII: Sous-algèbres de Cartan, éléments réguliers. Chapitre VIII: Algèbres de Lie semi-simples déployées, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1364, Hermann, Paris, 1975 (French). MR 0453824
- Egbert Brieskorn and Kyoji Saito, Artin-Gruppen und Coxeter-Gruppen, Invent. Math. 17 (1972), 245–271 (German). MR 323910, DOI 10.1007/BF01406235 W. Burau, Über Zopfgruppen und gleichsinnig verdrillte Verkettunger, Abh. Math. Sem. Univ. Hanischen 11 (1936), 171-178.
- H. S. M. Coxeter, Discrete groups generated by reflections, Ann. of Math. (2) 35 (1934), no. 3, 588–621. MR 1503182, DOI 10.2307/1968753
- H. S. M. Coxeter and W. O. J. Moser, Generators and relations for discrete groups, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1957. MR 0088489
- Howard Hiller, Geometry of Coxeter groups, Research Notes in Mathematics, vol. 54, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR 649068
- Wilhelm Magnus and Ada Peluso, On a theorem of V. I. Arnol′d, Comm. Pure Appl. Math. 22 (1969), 683–692. MR 264062, DOI 10.1002/cpa.3160220508
- Craig C. Squier, The Burau representation is unitary, Proc. Amer. Math. Soc. 90 (1984), no. 2, 199–202. MR 727232, DOI 10.1090/S0002-9939-1984-0727232-8
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 49-53
- MSC: Primary 20C32; Secondary 20F36
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938643-3
- MathSciNet review: 938643