Class groups of rank one semisimple monoids
HTML articles powered by AMS MathViewer
- by Lex E. Renner
- Proc. Amer. Math. Soc. 103 (1988), 54-58
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938644-5
- PDF | Request permission
Abstract:
Let $M$ be an irreducible, normal, algebraic monoid with unit group $S{l_2}\left ( \mathcal {K} \right ) \times {\mathcal {K}^ * },G{l_2}\left ( \mathcal {K} \right )$ or $PG{l_2}\left ( \mathcal {K} \right ) \times {\mathcal {K}^ * }$. In [7] these monoids are classified numerically. In this paper we compute explicitly the divisor class group of each monoid. As a corollary we characterize the monoids with factorial coordinate algebra. All results are independent of the characteristic of $\mathcal {K}$.References
- V. I. Danilov, The geometry of toric varieties, Uspekhi Mat. Nauk 33 (1978), no. 2(200), 85–134, 247 (Russian). MR 495499
- Robert M. Fossum, The divisor class group of a Krull domain, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 74, Springer-Verlag, New York-Heidelberg, 1973. MR 0382254
- Birger Iversen, The geometry of algebraic groups, Advances in Math. 20 (1976), no. 1, 57–85. MR 399114, DOI 10.1016/0001-8708(76)90170-5
- Mohan S. Putcha, On linear algebraic semigroups. I, II, Trans. Amer. Math. Soc. 259 (1980), no. 2, 457–469, 471–491. MR 567091, DOI 10.1090/S0002-9947-1980-0567091-0 —, Green’s relations on a connected algebraic monoid, Linear and Multilinear Algebra 11 (1982), 205-214.
- Lex E. Renner, Quasi-affine algebraic monoids, Semigroup Forum 30 (1984), no. 2, 167–176. MR 760216, DOI 10.1007/BF02573447
- Lex E. Renner, Classification of semisimple rank one monoids, Trans. Amer. Math. Soc. 287 (1985), no. 2, 457–473. MR 768719, DOI 10.1090/S0002-9947-1985-0768719-7
- Lex E. Renner, Classification of semisimple algebraic monoids, Trans. Amer. Math. Soc. 292 (1985), no. 1, 193–223. MR 805960, DOI 10.1090/S0002-9947-1985-0805960-9
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 54-58
- MSC: Primary 20M99; Secondary 14M20
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938644-5
- MathSciNet review: 938644