Two mixed Hadamard type generalizations of Heinz inequality
HTML articles powered by AMS MathViewer
- by Takayuki Furuta
- Proc. Amer. Math. Soc. 103 (1988), 91-96
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938650-0
- PDF | Request permission
Abstract:
We give two types of mixed Hadamard inequalities containing the terms $T,\left | T \right |$, and $\left | {{T^ * }} \right |$, where $T$ is a bounded linear operator on a complex Hilbert space. As an immediate consequence of these results, we can easily show some extensions of the Hadamard inequality and also the Heinze inequality: \[ \left ( * \right )\quad {\left | {\left ( {Tx,y} \right )} \right |^2} \leq \left ( {{{\left | T \right |}^{2\alpha }}x,x} \right )\left ( {{{\left | {{T^ * }} \right |}^{2\left ( {1 - \alpha } \right )}}y,y} \right )\] for any $T$, any $x,y$ in $H$, and any real number $\alpha$ with $0 \leq \alpha \leq 1$. And the following conditions are equivalent in case $0 < \alpha < 1$: (1) the equality in (*) holds; (2) ${\left | T \right |^{2\alpha }}x$ and ${T^ * }y$ are linearly dependent; (3) $Tx$ and ${\left | {{T^ * }} \right |^{2\left ( {1 - \alpha } \right )}}y$ are linearly dependent. Results in this paper would remain valid for unbounded operators under slight modifications.References
- J. Dixmier, Sur une inégalité de E. Heinz, Math. Ann. 126 (1953), 75–78 (French). MR 56200, DOI 10.1007/BF01343151
- Takayuki Furuta, An elementary proof of Hadamard’s theorem, Mat. Vesnik 8(23) (1971), 267–269. MR 294371
- Takayuki Furuta, Mixed Hadamard’s theorems, Proc. Amer. Math. Soc. 96 (1986), no. 2, 217–220. MR 818447, DOI 10.1090/S0002-9939-1986-0818447-0
- Takayuki Furuta, A simplified proof of Heinz inequality and scrutiny of its equality, Proc. Amer. Math. Soc. 97 (1986), no. 4, 751–753. MR 846001, DOI 10.1090/S0002-9939-1986-0846001-3 F. G. Gantmacher, The theory of matrices, Vol. 1, Chelsea, New York, 1960.
- Paul Richard Halmos, A Hilbert space problem book, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 17, Springer-Verlag, New York-Berlin, 1982. MR 675952 G. H. Hardy, J. E. Littlewood, and G. Polya, Inequalities, Cambridge Univ. Press, 1934.
- Erhard Heinz, On an inequality for linear operators in a Hilbert space, Report of an international conference on operator theory and group representations, Arden House, Harriman, N. Y., 1955, National Academy of Sciences-National Research Council, Washington, D.C., 1955, pp. 27–29. Publ. 387. MR 0079139
- Tosio Kato, Notes on some inequalities for linear operators, Math. Ann. 125 (1952), 208–212. MR 53390, DOI 10.1007/BF01343117
- Tosio Kato, A generalization of the Heinz inequality, Proc. Japan Acad. 37 (1961), 305–308. MR 145345
- Harold Widom, Lectures on integral equations, Van Nostrand Mathematical Studies, No. 17, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. Notes by David Drazin and Anthony J. Tromba. MR 0243299
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 91-96
- MSC: Primary 47A30; Secondary 47A05
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938650-0
- MathSciNet review: 938650