Weighted norm inequalities for Bochner-Riesz spherical summation multipliers
HTML articles powered by AMS MathViewer
- by Kenneth F. Andersen
- Proc. Amer. Math. Soc. 103 (1988), 165-171
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938663-9
- PDF | Request permission
Abstract:
Sufficient conditions to be satisfied by nonnegative weight functions $\omega \left ( {\left | x \right |} \right )$ are given in order that the Bochner-Riesz spherical summation multiplier operators restricted to radial functions of ${R^n}$ be bounded on ${L^p}\left ( {{R^n};\omega \left ( {\left | x \right |} \right )dx} \right )$. For a certain class of weights these conditions are also necessary.References
- Kenneth F. Andersen, Weighted inequalities for the disc multiplier, Proc. Amer. Math. Soc. 83 (1981), no. 2, 269–275. MR 624912, DOI 10.1090/S0002-9939-1981-0624912-7
- Kenneth F. Andersen and Benjamin Muckenhoupt, Weighted weak type Hardy inequalities with applications to Hilbert transforms and maximal functions, Studia Math. 72 (1982), no. 1, 9–26. MR 665888, DOI 10.4064/sm-72-1-9-26
- Lennart Carleson and Per Sjölin, Oscillatory integrals and a multiplier problem for the disc, Studia Math. 44 (1972), 287–299. (errata insert). MR 361607, DOI 10.4064/sm-44-3-287-299
- Sagun Chanillo and Benjamin Muckenhoupt, Weak type estimates for Bochner-Riesz spherical summation multipliers, Trans. Amer. Math. Soc. 294 (1986), no. 2, 693–703. MR 825730, DOI 10.1090/S0002-9947-1986-0825730-6
- Charles Fefferman, Inequalities for strongly singular convolution operators, Acta Math. 124 (1970), 9–36. MR 257819, DOI 10.1007/BF02394567
- Charles Fefferman, The multiplier problem for the ball, Ann. of Math. (2) 94 (1971), 330–336. MR 296602, DOI 10.2307/1970864
- Charles Fefferman, A note on spherical summation multipliers, Israel J. Math. 15 (1973), 44–52. MR 320624, DOI 10.1007/BF02771772
- Carl S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996–999. MR 63477, DOI 10.1073/pnas.40.10.996
- I. I. Hirschman Jr., Multiplier transformations. II, Duke Math. J. 28 (1961), 45–56. MR 124693
- Richard Hunt, Benjamin Muckenhoupt, and Richard Wheeden, Weighted norm inequalities for the conjugate function and Hilbert transform, Trans. Amer. Math. Soc. 176 (1973), 227–251. MR 312139, DOI 10.1090/S0002-9947-1973-0312139-8
- Carlos E. Kenig and Peter A. Tomas, The weak behavior of spherical means, Proc. Amer. Math. Soc. 78 (1980), no. 1, 48–50. MR 548082, DOI 10.1090/S0002-9939-1980-0548082-8 B. Muckenhoupt, Hardy’s inequalities with weights, Studia Math. 44 (1972), 31-38.
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Elias M. Stein, Interpolation of linear operators, Trans. Amer. Math. Soc. 83 (1956), 482–492. MR 82586, DOI 10.1090/S0002-9947-1956-0082586-0
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Elias M. Stein and Guido Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR 0304972
- Peter A. Tomas, Restriction theorems for the Fourier transform, Harmonic analysis in Euclidean spaces (Proc. Sympos. Pure Math., Williams Coll., Williamstown, Mass., 1978) Proc. Sympos. Pure Math., XXXV, Part, Amer. Math. Soc., Providence, R.I., 1979, pp. 111–114. MR 545245
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
- G. V. Welland, Norm convergence of Riesz-Bochner means for radial functions, Canadian J. Math. 27 (1975), 176–185. MR 387948, DOI 10.4153/CJM-1975-023-1
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 165-171
- MSC: Primary 42B15; Secondary 42B20, 44A15
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938663-9
- MathSciNet review: 938663