Integral inequalities of Hardy and Poincaré type
HTML articles powered by AMS MathViewer
- by Harold P. Boas and Emil J. Straube
- Proc. Amer. Math. Soc. 103 (1988), 172-176
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938664-0
- PDF | Request permission
Abstract:
The Poincaré inequality $||u|{|_p} \leq C||\nabla u|{|_p}$ in a bounded domain holds, for instance, for compactly supported functions, for functions with mean value zero and for harmonic functions vanishing at a point. We show that it can be improved to $||u|{|_p} \leq C||{\delta ^\beta }\nabla u|{|_p}$, where $\delta$ is the distance to the boundary, and the positive exponent $\beta$ depends on the smoothness of the boundary.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 0450957
- Alano Ancona, On strong barriers and an inequality of Hardy for domains in $\textbf {R}^n$, J. London Math. Soc. (2) 34 (1986), no. 2, 274–290. MR 856511, DOI 10.1112/jlms/s2-34.2.274
- Sheldon Axler and Allen L. Shields, Univalent multipliers of the Dirichlet space, Michigan Math. J. 32 (1985), no. 1, 65–80. MR 777302, DOI 10.1307/mmj/1029003133 R. Courant and D. Hilbert, Methoden der mathematischen Physik, vol. 2, Springer-Verlag, Berlin, 1937.
- Jacqueline Détraz, Classes de Bergman de fonctions harmoniques, Bull. Soc. Math. France 109 (1981), no. 2, 259–268 (French, with English summary). MR 623793, DOI 10.24033/bsmf.1941
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683 G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Univ. Press, 1934.
- J. A. Hummel, Counterexamples to the Poincaré inequality, Proc. Amer. Math. Soc. 8 (1957), 207–210. MR 84546, DOI 10.1090/S0002-9939-1957-0084546-9 L. D. Kudryavtsev, Direct and inverse imbedding theorems, Transl. Math. Monographs, Amer. Math. Soc. Providence, R.I., 1974.
- Alois Kufner, Weighted Sobolev spaces, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1985. Translated from the Czech. MR 802206
- John L. Lewis, Uniformly fat sets, Trans. Amer. Math. Soc. 308 (1988), no. 1, 177–196. MR 946438, DOI 10.1090/S0002-9947-1988-0946438-4
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 0202511, DOI 10.1007/978-3-540-69952-1
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Michael E. Taylor, Pseudodifferential operators, Princeton Mathematical Series, No. 34, Princeton University Press, Princeton, N.J., 1981. MR 618463, DOI 10.1515/9781400886104
- William P. Ziemer, A Poincaré-type inequality for solutions of elliptic differential equations, Proc. Amer. Math. Soc. 97 (1986), no. 2, 286–290. MR 835882, DOI 10.1090/S0002-9939-1986-0835882-5
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 172-176
- MSC: Primary 46E35; Secondary 26D10, 35H05
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938664-0
- MathSciNet review: 938664