Martin boundaries of Denjoy domains
HTML articles powered by AMS MathViewer
- by Shigeo Segawa
- Proc. Amer. Math. Soc. 103 (1988), 177-183
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938665-2
- PDF | Request permission
Abstract:
Let $E( \subset {\mathbf {\hat C}})$ be a compact set in the real axis. It is shown that there exists an $E$ with zero linear measure such that Martin compactification of the domain ${\mathbf {\hat C}} - E$ is not homeomorphic to ${\mathbf {\hat C}}$. Moreover, it is shown that if for some $\lambda > \tfrac {1}{2}$ \[ \frac {{|{E^c} \cap [ - t,t]|}}{t} = O\left ( {{{\left ( {\frac {1}{{\log {t^{ - 1}}}}} \right )}^\lambda }} \right )\quad (t \to 0),\] the set of minimal Martin boundary points of ${\mathbf {\hat C}} - E$ ’over 0’ consists of two points. This assertion is not valid for $\lambda = \tfrac {1}{2}$.References
- Alano Ancona, Une propriété de la compactification de Martin d’un domaine euclidien, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 71–90 (French, with English summary). MR 558589
- Michael Benedicks, Positive harmonic functions vanishing on the boundary of certain domains in $\textbf {R}^{n}$, Ark. Mat. 18 (1980), no. 1, 53–72. MR 608327, DOI 10.1007/BF02384681
- Corneliu Constantinescu and Aurel Cornea, Ideale Ränder Riemannscher Flächen, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Band 32, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963 (German). MR 0159935
- John B. Garnett and Peter W. Jones, The corona theorem for Denjoy domains, Acta Math. 155 (1985), no. 1-2, 27–40. MR 793236, DOI 10.1007/BF02392536
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 177-183
- MSC: Primary 31C35
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938665-2
- MathSciNet review: 938665