The density of extreme points in complex polynomial approximation
HTML articles powered by AMS MathViewer
- by András Kroó and E. B. Saff
- Proc. Amer. Math. Soc. 103 (1988), 203-209
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938669-X
- PDF | Request permission
Abstract:
Let $K$ be a compact set in the complex plane having connected and regular complement, and let $f$ be any function continuous on $K$ and analytic in the interior of $K$. For the polynomials $p_n^*(f)$ of respective degrees at most $n$ of best uniform approximation to $f$ on $K$, we investigate the density of the sets of extreme points \[ {A_n}(f): = \{ z \in K:|f(z) - p_n^*(f)(z)| = ||f - p_n^*(f)|{|_K}\} \] in the boundary of $K$.References
- W. H. J. Fuchs, On Chebyshev approximation on sets with several components, Aspects of contemporary complex analysis (Proc. NATO Adv. Study Inst., Univ. Durham, Durham, 1979) Academic Press, London-New York, 1980, pp. 399–408. MR 623482
- M. Ĭ. Kadec′, On the distribution of points of maximum deviation in the approximation of continuous functions by polynomials, Uspehi Mat. Nauk 15 (1960), no. 1 (91), 199–202 (Russian). MR 0113079
- A. Kroó, On the distribution of points of maximal deviation in complex Čebyšev approximation, Anal. Math. 7 (1981), no. 4, 257–263 (English, with Russian summary). MR 648490, DOI 10.1007/BF01908217
- G. G. Lorentz, Distribution of alternation points in uniform polynomial approximation, Proc. Amer. Math. Soc. 92 (1984), no. 3, 401–403. MR 759662, DOI 10.1090/S0002-9939-1984-0759662-2
- D. J. Newman and Harold S. Shapiro, Some theorems on Čebyšev approximation, Duke Math. J. 30 (1963), 673–681. MR 156138, DOI 10.1215/S0012-7094-63-03071-0
- Allan Pinkus, $n$-widths in approximation theory, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 7, Springer-Verlag, Berlin, 1985. MR 774404, DOI 10.1007/978-3-642-69894-1
- Harold S. Shapiro, Topics in approximation theory, Lecture Notes in Mathematics, Vol. 187, Springer-Verlag, Berlin-New York, 1971. With appendices by Jan Boman and Torbjörn Hedberg. MR 0437981, DOI 10.1007/BFb0058976
- Sp. Tashev, On the distribution of the points of maximal deviation for the polynomials of best Chebyshev and Hausdorff approximations, Approximation and function spaces (Gdańsk, 1979) North-Holland, Amsterdam-New York, 1981, pp. 791–799. MR 649477
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 203-209
- MSC: Primary 30E10; Secondary 41A10, 41A50
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938669-X
- MathSciNet review: 938669