Total paracompactness and Banach spaces
HTML articles powered by AMS MathViewer
- by Francisco Gallego Lupiañez
- Proc. Amer. Math. Soc. 103 (1988), 210-214
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938670-6
- PDF | Request permission
Abstract:
In this paper, we study some problems related to the Corson theorem. In particular we prove that ${c_0}$ does not fulfil such a theorem; hence this theorem is not valid for all infinite-dimensional Banach spaces. We give also generalizations of Corson’s theorem for some infinite-dimensional normed spaces.References
- S. Banach, Théorie des opérations linéaires, 2nd ed., Chelsea, New York, 1978.
- H. H. Corson, Collections of convex sets which cover a Banach space, Fund. Math. 49 (1960/61), 143–145. MR 125430, DOI 10.4064/fm-49-2-143-145 H. H. Corson, T. J. McMinn, E. A. Michael, and J. I. Nagata, Bases and local finiteness, Notices Amer. Math. Soc. 6 (1959), 814.
- Douglas W. Curtis, Total and absolute paracompactness, Fund. Math. 77 (1973), no. 3, 277–283. MR 321005, DOI 10.4064/fm-77-3-277-283 R. M. Ford, Basis properties in dimension theory, Doctoral Dissertation, Auburn Univ., 1963.
- Richard B. Holmes, Geometric functional analysis and its applications, Graduate Texts in Mathematics, No. 24, Springer-Verlag, New York-Heidelberg, 1975. MR 0410335, DOI 10.1007/978-1-4684-9369-6 J. Horwáth, Topological vector spaces and distributions. I, Addison-Wesley, Reading, Mass., 1966.
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493 A. Pełczyński, MR 23 # A2732.
- H. Toruńczyk, Smooth partitions of unity on some non-separable Banach spaces, Studia Math. 46 (1973), 43–51. MR 339255, DOI 10.4064/sm-46-1-43-51
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 210-214
- MSC: Primary 46B20; Secondary 54D18
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938670-6
- MathSciNet review: 938670