Point singularities and conformal metrics on Riemann surfaces
HTML articles powered by AMS MathViewer
- by Robert C. McOwen
- Proc. Amer. Math. Soc. 103 (1988), 222-224
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938672-X
- PDF | Request permission
Abstract:
Given a closed hyperbolic Riemann surface and a finite number of points, we prove the existence and uniqueness of hyperbolic conformal metrics with prescribed singularities or degeneracies at the given points.References
- Patricio Aviles and Robert McOwen, Conformal deformations of complete manifolds with negative curvature, J. Differential Geom. 21 (1985), no.Β 2, 269β281. MR 816672
- Jerry L. Kazdan and F. W. Warner, Curvature functions for compact $2$-manifolds, Ann. of Math. (2) 99 (1974), 14β47. MR 343205, DOI 10.2307/1971012
- Robert C. McOwen, On the equation $\Delta u+Ke^{2u}=f$ and prescribed negative curvature in $\textbf {R}^{2}$, J. Math. Anal. Appl. 103 (1984), no.Β 2, 365β370. MR 762561, DOI 10.1016/0022-247X(84)90133-1
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 222-224
- MSC: Primary 30F10; Secondary 35J60, 53A30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938672-X
- MathSciNet review: 938672