Polynomially moving ergodic averages
HTML articles powered by AMS MathViewer
- by Mark Schwartz
- Proc. Amer. Math. Soc. 103 (1988), 252-254
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938678-0
- PDF | Request permission
Abstract:
Given an increasing sequence of positive integers $\left \{ {{m_n}} \right \}$, a non-decreasing sequence of positive integers $\left \{ {{b_n}} \right \}$, and a measurable, measure-preserving ergodic transformation $\tau$ on a probability space $\left ( {\Omega ,\mathcal {F},\mu } \right )$, the a.s. convergence of the moving averages ${T_n}\left ( f \right ) = b_n^{ - 1}\sum \nolimits _{k = {m_n} + 1}^{{m_n} + {b_n}} {f\left ( {{\tau ^k}} \right )}$ is considered, for $f \in {L_p}\left ( \Omega \right )$. A counterexample is constructed in the case of polynomial-like $\left \{ {{m_n}} \right \}$.References
- M. A. Akcoglu and A. del Junco, Convergence of averages of point transformations, Proc. Amer. Math. Soc. 49 (1975), 265–266. MR 360999, DOI 10.1090/S0002-9939-1975-0360999-4
- Andrés del Junco and Joseph Rosenblatt, Counterexamples in ergodic theory and number theory, Math. Ann. 245 (1979), no. 3, 185–197. MR 553340, DOI 10.1007/BF01673506
- A. del Junco and J. M. Steele, Moving averages of ergodic processes, Metrika 24 (1977), no. 1, 35–43. MR 430209, DOI 10.1007/BF01893390
- Joseph Rosenblatt, Ergodic group actions, Arch. Math. (Basel) 47 (1986), no. 3, 263–269. MR 861875, DOI 10.1007/BF01192003
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 252-254
- MSC: Primary 28D05
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938678-0
- MathSciNet review: 938678