Homogeneous polynomials on the ball of $\textbf {C}^ 2$
HTML articles powered by AMS MathViewer
- by Josip Globevnik
- Proc. Amer. Math. Soc. 103 (1988), 255-259
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938679-2
- PDF | Request permission
Abstract:
Let ${B_2}$ be the open unit ball of ${C^2}$. Let $T = \left \{ {\left ( {u,w} \right ) \in b{B_2}:1 - a \leq {{\left | u \right |}^2} \leq a} \right .$ where $1/2 < a < 1/2 + \sqrt 3 /4$. For each $n \in {\mathbf {N}}$ we construct a homogeneous polynomial ${H_n}:{C^2} \to {C^2}$ of degree $n$ such that $\left | {{H_n}} \right | \leq 1$ on ${B_2}$ and $\left | {{H_n}} \right | \geq c$ on $T$ where $c > 0$ does not depend on $n$.References
- A. B. Aleksandrov, Proper holomorphic mappings from the ball to the polydisk, Dokl. Akad. Nauk SSSR 286 (1986), no. 1, 11–15 (Russian). MR 822088
- A. B. Aleksandrov, Inner functions on compact spaces, Funktsional. Anal. i Prilozhen. 18 (1984), no. 2, 1–13 (Russian). MR 745695
- Monique Hakim and Nessim Sibony, Fonctions holomorphes bornées sur la boule unité de $\textbf {C}^{n}$, Invent. Math. 67 (1982), no. 2, 213–222 (French). MR 665153, DOI 10.1007/BF01393814
- Erik Løw, The ball in $\textbf {C}^n$ is a closed complex submanifold of a polydisc, Invent. Math. 83 (1986), no. 3, 405–410. MR 827359, DOI 10.1007/BF01394414
- Walter Rudin, New constructions of functions holomorphic in the unit ball of $\textbf {C}^n$, CBMS Regional Conference Series in Mathematics, vol. 63, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. MR 840468, DOI 10.1090/cbms/063
- J. Ryll and P. Wojtaszczyk, On homogeneous polynomials on a complex ball, Trans. Amer. Math. Soc. 276 (1983), no. 1, 107–116. MR 684495, DOI 10.1090/S0002-9947-1983-0684495-9
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 255-259
- MSC: Primary 32H35; Secondary 32E10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938679-2
- MathSciNet review: 938679