Weak $(1,1)$ boundedness of singular integrals with nonsmooth kernel
HTML articles powered by AMS MathViewer
- by Steve Hofmann
- Proc. Amer. Math. Soc. 103 (1988), 260-264
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938680-9
- PDF | Request permission
Abstract:
If $\Omega \in {L^q}\left ( {{S^1}} \right )$ for some $q > 1,\int _{{S^1}} {\Omega = 0}$, and $\Omega$ is homogeneous of degree 0, then the operator defined in two dimensions by ${T_\varepsilon }f\left ( x \right ) = \int _{\left | y \right | > \varepsilon } {f\left ( {x - y} \right )\Omega \left ( y \right ){{\left | y \right |}^{ - 2}}dy}$ is of weak-type $(1,1)$ with bound independent of $\varepsilon > 0$.References
- A. P. Calderón and A. Zygmund, On singular integrals, Amer. J. Math. 78 (1956), 289–309. MR 84633, DOI 10.2307/2372517
- Michael Christ, Weak type $(1,1)$ bounds for rough operators, Ann. of Math. (2) 128 (1988), no. 1, 19–42. MR 951506, DOI 10.2307/1971461
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 260-264
- MSC: Primary 42B20; Secondary 47G05
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938680-9
- MathSciNet review: 938680