The logically simplest form of the infinity axiom
HTML articles powered by AMS MathViewer
- by Franco Parlamento and Alberto Policriti
- Proc. Amer. Math. Soc. 103 (1988), 274-276
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938682-2
- PDF | Request permission
Note: Proc. Amer. Math. Soc. 108, no. 1 (1990), pp. 285-286.
Abstract:
We provide a way of expressing the existence of infinite sets in the first order set theoretic language, which is of the lowest possible logical complexity.References
- Alfredo Ferro, Eugenio G. Omodeo, and Jacob T. Schwartz, Decision procedures for elementary sublanguages of set theory. I. Multilevel syllogistic and some extensions, Comm. Pure Appl. Math. 33 (1980), no. 5, 599–608. MR 586413, DOI 10.1002/cpa.3160330503
- Thomas Jech, Set theory, Pure and Applied Mathematics, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1978. MR 506523
- Azriel Lévy, Basic set theory, Springer-Verlag, Berlin-New York, 1979. MR 533962
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 274-276
- MSC: Primary 03E30
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938682-2
- MathSciNet review: 938682