A proportionality principle for partitioning problems
HTML articles powered by AMS MathViewer
- by Theodore P. Hill
- Proc. Amer. Math. Soc. 103 (1988), 288-293
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938685-8
- PDF | Request permission
Abstract:
In a general class of measure-partitioning or fair-division problems, the extremal case occurs when the measures are proportional. Applications are given to classical and recent fair-division problems, and to statistical decision theory, mathematical physics, Banach space theory, and inequalities for continuous random variables.References
- Thomas E. Armstrong and Karel Prikry, Liapounoff’s theorem for nonatomic, finitely-additive, bounded, finite-dimensional, vector-valued measures, Trans. Amer. Math. Soc. 266 (1981), no. 2, 499–514. MR 617547, DOI 10.1090/S0002-9947-1981-0617547-8
- L. E. Dubins and E. H. Spanier, How to cut a cake fairly, Amer. Math. Monthly 68 (1961), 1–17. MR 129031, DOI 10.2307/2311357
- A. Dvoretzky, A. Wald, and J. Wolfowitz, Relations among certain ranges of vector measures, Pacific J. Math. 1 (1951), 59–74. MR 43865
- Theodore P. Hill, Determining a fair border, Amer. Math. Monthly 90 (1983), no. 7, 438–442. MR 711642, DOI 10.2307/2975720
- Theodore P. Hill, Equipartitioning common domains of nonatomic measures, Math. Z. 189 (1985), no. 3, 415–419. MR 783565, DOI 10.1007/BF01164162
- Theodore P. Hill, Partitioning general probability measures, Ann. Probab. 15 (1987), no. 2, 804–813. MR 885145
- A. Liapounoff, Sur les fonctions-vecteurs complètement additives, Bull. Acad. Sci. URSS. Sér. Math. [Izvestia Akad. Nauk SSSR] 4 (1940), 465–478 (Russian, with French summary). MR 0004080
- Jerzy Neyman, Un théorème d’existence, C. R. Acad. Sci. Paris 222 (1946), 843–845 (French). MR 15697
- K. P. S. Bhaskara Rao and M. Bhaskara Rao, Theory of charges, Pure and Applied Mathematics, vol. 109, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983. A study of finitely additive measures; With a foreword by D. M. Stone. MR 751777
- H. Steinhaus, Sur la division pragmatique, Econometrica 17 (1949), no. (Sup, (Supplement), 315–319 (French). MR 39231, DOI 10.2307/1907319
- Gábor Szegő, Orthogonal polynomials, 3rd ed., American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical Society, Providence, R.I., 1967. MR 0310533
- K. Urbanik, Quelques théorèmes sur les mesures, Fund. Math. 41 (1954), 150–162 (French). MR 63427, DOI 10.4064/fm-41-1-150-162
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 288-293
- MSC: Primary 60E15; Secondary 05A17, 60A10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0938685-8
- MathSciNet review: 938685