A SPECIAL CASE OF POSITIVITY

S. P. DUTTA

(Communicated by William C. Waterhouse)

ABSTRACT. In this note we prove a special case of positivity of Serre’s Conjecture on intersection multiplicity of modules \([S]\). The conjecture can be stated as follows.

Let \(R \) be a regular local ring and let \(M \) and \(N \) be two finitely generated modules over \(R \) such that \(l(M \otimes N) < \infty \). Then \(\chi(M, N) = \sum_{i=0}^{\dim R} (-1)^i l(Tor^R_i(M, N)) \geq 0 \), the sign of inequality holds if and only if \(\dim M + \dim N = \dim R \).

Serre proved the conjecture in the equicharacteristic and in the unramified case. Recently P. Roberts [R] and H. Gillet and C. Soulé [H-G] proved independently the vanishing part, i.e. \(\chi(M, N) = 0 \) when \(\dim M + \dim N < \dim R \) in more generality. The positivity part, i.e. \(\chi(M, N) > 0 \) when \(\dim M + \dim N = \dim R \) is still very much an open question.

We write \(R = V[[x_1, \ldots, x_n]]/(f) \), \(V \) a complete discrete valuation ring, \(p \) a generator of the maximal ideal of \(V \), \(p \in m^2 \) where \(m \) is the maximal ideal of \(R \) and \(f \in m - m^2 \). We divide the whole problem into three parts:

1. \(pM = 0, pN = 0 \). This case was proved by Malliavin-Brameret [M].
2. \(p \) is a non-zero-divisor on \(M \) and \(p \) is nilpotent on \(N \).
3. \(p \) is a non-zero-divisor on both \(M \) and \(N \).

The theorem which we are going to prove is the following

THEOREM. Let \(R \) be a regular local ring. Let \(M \) and \(N \) be two finitely generated modules over \(R \) such that

(i) \(M \) is Cohen-Macaulay.
(ii) \(l(M \otimes N) < \infty \) and \(\dim M + \dim N = \dim R \).
(iii) \(p^tN = 0 \) for some integer \(t \) and \(p \) is a non-zero-divisor on \(M \).

Then \(\chi(M, N) > 0 \).

The above theorem was already proved by the author in the case when \(\dim R \leq 5 \) in [D2]. The vanishing theorem of Roberts (Gillet and Soulé) and the techniques developed by the author in [D1] now make it possible to prove the above version.

PROOF OF THE THEOREM. We divide the proof into two steps.

Step 1. Let \(R \) be a Gorenstein local ring of characteristic \(p > 0 \). Let \(M \) be a module of finite projective dimension and let \(N \) be any other module over \(R \) such that \(l(M \otimes N) < \infty \) and \(\dim M + \dim N \leq \dim R \).

Let \(f: R \to R \) be the Frobenius map, i.e. \(f(x) = x^p \). We denote by \(f_R^p \) the bialgebra \(R \), having the structure of an \(R \)-algebra from the left by \(f^n \) and from...
the right by the identity map, i.e., if $\alpha \in R$, $x \in f^n_R$, $\alpha x = \alpha p^n x$, and $x\alpha = x\alpha$. We assume $K = R/m$, where m is the maximal ideal of R, is perfect. (This assumption is not at all restrictive with respect to generalized type of intersection multiplicity conjectures.) We denote by $F^n(M)$ the object $M \otimes f^n_R$. We define $\chi_\infty(M, N) = \lim_{n \to \infty} \chi(F^n(M), N)/p^{n \cdot \text{codim} M}$. The following properties of χ_∞ were proved in [D1].

1. If $\dim M + \dim N < \dim R$, then $\chi_\infty(M, N) = 0$ (Corollary 1, p. 437).
2. If M is Cohen-Macaulay, then
 \[
 \chi_\infty(M, N) = \lim_{n \to \infty} l(F^n(M) \otimes N)/p^{n \cdot \text{codim} M}
 \]
 and this is a positive integer if R is a complete intersection.
3. $\chi_\infty(M, N) = \chi(M, N)$ if the vanishing conjecture holds for every pair (M, T) with $l(M \otimes T) < \infty$ and $\dim M + \dim T < \dim R$ (this assertion follows easily from Proposition 1.2 of [D1]).

Step 2. Under the hypothesis in our theorem, since χ is additive, we can assume $pN = 0$. Since p is a non-zero-divisor on both R and M and $pN = 0$, we have

(i) $\chi^R(M, N) = \chi^R/p^R(M/pM, N)$.
(ii) $\text{p.d.}_{R/pR} M/pM < \infty$ and $\chi^R/p^R(M/pM, T) = 0$, where
 \[
 \dim M/pM + \dim T < \dim R/pR
 \]
 (since this implies $\dim M + \dim T < \dim R$, and $\chi(M, T) = 0$ [G-S, R]).
(iii) M/pM is Cohen-Macaulay over R/pR with $\text{Ch. } R/pR = p > 0$.

We denote R/pR by \overline{R}. We have by (ii) and (3) of Step 1

\[
\chi_\infty(\overline{M}, N) = \chi^R(\overline{M}, N) = \chi^R(M, N).
\]

Moreover by (iii) and (2) of Step 1

\[
\chi_\infty(\overline{M}, N) = \lim_{n \to \infty} l(F^n(\overline{M}) \otimes N)/p^{n \cdot \text{codim} \overline{M}}.
\]

Hence $\chi^R(M, N) > 0$.

REMARK. Unfortunately, χ_∞ fails to behave like a “multiplicity function” over R for pairs (M, N) with $\text{p.d. } M < \infty$, $l(M \otimes N) < \infty$, $\dim M + \dim N = \dim R$ when M is not Cohen-Macaulay. This was pointed out in [D-H-M]. The counterexample discussed there gives rise to a module M with $\text{p.d. } M < \infty$, $\dim M = 1$, depth $M = 0$ and another module N such that $\chi_\infty(M, N)$ is negative.

REFERENCES

A SPECIAL CASE OF POSITIVITY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA, PENNSYLVANIA 19104-6395

Current address: Department of Mathematics, University of Illinois, Urbana, Illinois 61801