Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Support points of subordination families


Author: D. J. Hallenbeck
Journal: Proc. Amer. Math. Soc. 103 (1988), 414-416
MSC: Primary 30C80
DOI: https://doi.org/10.1090/S0002-9939-1988-0943058-8
MathSciNet review: 943058
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $s(F)$ denote the set of functions subordinate to a function $F$ analytic in the unit disc $\Delta$. Let $Hs(F)$ denote the closed convex hull of $s(F)$ and supp $s(F)$ the set of support points of $s(F)$. We prove the following Theorem. Let $F$ be analytic in $\Delta$ and satisfy (1) $Hs(F) = \{ \int _{\partial \Delta } {F(xz)d\mu (x):\mu \;{\text {a}}\;{\text {probablity}}\;{\text {measure}}\;{\text {on}}\;\partial \Delta } \}$ and (2) $F(z) = G(z)/{(z - {x_0})^\alpha }$ where $G$ is analytic in $\Delta$, continuous in $\bar \Delta$, $G({x_0}) \ne 0$ and $\alpha > 1$. Then supp $s(F) = \left \{ {F(xz):|x| = 1} \right \}$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C80

Retrieve articles in all journals with MSC: 30C80


Additional Information

Keywords: Support points, subordination
Article copyright: © Copyright 1988 American Mathematical Society