Functions whose derivative has positive real part
HTML articles powered by AMS MathViewer
- by R. R. London
- Proc. Amer. Math. Soc. 103 (1988), 521-524
- DOI: https://doi.org/10.1090/S0002-9939-1988-0943078-3
- PDF | Request permission
Abstract:
In this paper we find a sharp upper bound for $\left | {z f’\left ( z \right ) / f\left ( z \right )} \right |$, where $f$ is a normalised analytic function with Re $f’\left ( z \right ) > 0$ in the unit disc.References
- Peter L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 259, Springer-Verlag, New York, 1983. MR 708494
- Stephan Ruscheweyh, Nichtlineare Extremalprobleme für holomorphe Stieltjesintegrale, Math. Z. 142 (1975), 19–23 (German). MR 374406, DOI 10.1007/BF01214844
- D. K. Thomas, On functions whose derivative has positive real part, Proc. Amer. Math. Soc. 98 (1986), no. 1, 68–70. MR 848877, DOI 10.1090/S0002-9939-1986-0848877-2
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 521-524
- MSC: Primary 30C45
- DOI: https://doi.org/10.1090/S0002-9939-1988-0943078-3
- MathSciNet review: 943078