Bounded sequence-to-function Hausdorff transformations
HTML articles powered by AMS MathViewer
- by Constantine Georgakis
- Proc. Amer. Math. Soc. 103 (1988), 531-542
- DOI: https://doi.org/10.1090/S0002-9939-1988-0943080-1
- PDF | Request permission
Abstract:
Let \[ \left ( {Ta} \right )\left ( y \right ) = \sum \limits _{n = 0}^\infty {{{\left ( { - y} \right )}^n}} \frac {{{g^{\left ( n \right )}}\left ( y \right )}}{{n!}}{a_{n,\quad }}\quad y \geq 0\] be the sequence-to-function Hausdorff transformation generated by the completely monotone function $g$ or, what is equivalent, the Laplace transform of a finite positive measure $\sigma$ on $[0,\infty )$. It is shown that for $1 \leq p \leq \infty$, $T$ is a bounded transformation of ${l^p}$ with weight $\Gamma \left ( {n + s + 1} \right ) / n!$ into ${L^p}[0,\infty )$ with weight ${y^s},s > - 1$, whose norm $\left \| T \right \| = \int _0^\infty {{t^{ - \left ( {1 + s} \right ) / p}}} d\sigma \left ( t \right ) = C\left ( {p,s} \right )$ if and only if $C\left ( {p,s} \right ) < \infty$, and that for $1 < p < \infty ,{\left \| {Ta} \right \|_{p,s}} < C\left ( {p,s} \right ){\left \| a \right \|_{p,s}}$ unless ${a_n}$ is a null sequence. Furthermore, if $1 < p < r < \infty , \;0 < \lambda < 1$ and $\sigma$ is absolutely continuous with derivatives $\psi$ such that the function ${\psi _r}\left ( t \right ) = {t^{ - 1 / r}}\psi \left ( t \right )$ belongs to ${L^{1 / \lambda }}[0,\infty )$, then the transformation $\left ( {{T_\lambda }a} \right )\left ( y \right ) = {y^{1 - \lambda }}\left ( {Ta} \right )\left ( y \right )$ is bounded from ${l^p}$ to ${L^r}[0,\infty )$ and has norm $\left \| {{T_\lambda }} \right \| \leq {\left \| {{\psi _r}} \right \|_{1 / \lambda }}$. The transformation $T$ includes in particular the Borel transform and that of generalized Abel means. These results constitute an improved analogue of a theorem of Hardy concerning the discrete Hausdorff transformation on ${l^p}$ which corresponds to a totally monotone sequence, and lead to improved forms of some inequalities of Hardy and Littlewood for power series and moment sequences.References
- D. Borwein, On a scale of Abel-type summability methods, Proc. Cambridge Philos. Soc. 53 (1957), 318–322. MR 86158
- G. H. Hardy, An inequality for Hausdorff means, J. London Math. Soc. 18 (1943), 46–50. MR 8854, DOI 10.1112/jlms/s1-18.1.46
- G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press, 1949. MR 0030620 G. H. Hardy and J. E. Littlewood, Elementary theorems concerning power series and moment constants, J. für Mat. 157 (1927), 141-158. G. H. Hardy, J. E. Littlewood and G. Pölya, Inequalities, Cambridge Univ. Press, 1967.
- Otto Henriksson, Über die Hausdorffschen Limitierungsverfahren. die schwächer sind als das Abelsche, Math. Z. 39 (1935), no. 1, 501–510 (German). MR 1545514, DOI 10.1007/BF01201370
- Amnon Jakimovski, The sequence-to-function analogues to Hausdorff transformations, Bull. Res. Council Israel Sect. F 8F (1960), 135–154 (1960). MR 126095 K. Knopp, Über Reihen mit positiven Griedern, J. London Math. Soc. 30 (1930), 13-21.
- Dany Leviatan and Lee Lorch, A characterization of totally regular $[J,\,f(x)]$ transforms, Proc. Amer. Math. Soc. 23 (1969), 315–319. MR 246014, DOI 10.1090/S0002-9939-1969-0246014-9
- A. Rényi, Summation methods and probability theory, Magyar Tud. Akad. Mat. Kutató Int. Közl. 4 (1959), 389–399 (English, with Russian and Hungarian summaries). MR 130701
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, N. J., 1941. MR 0005923
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 531-542
- MSC: Primary 40G05; Secondary 26D10, 47B38
- DOI: https://doi.org/10.1090/S0002-9939-1988-0943080-1
- MathSciNet review: 943080