Small sets of infinite type are benign for the $\overline \partial$-Neumann problem
HTML articles powered by AMS MathViewer
- by Harold P. Boas
- Proc. Amer. Math. Soc. 103 (1988), 569-578
- DOI: https://doi.org/10.1090/S0002-9939-1988-0943086-2
- PDF | Request permission
Abstract:
An explicit construction shows that the $\bar \partial$-Neumann operator and the Bergman and Szegő projections are globally regular in every smooth bounded pseudoconvex domain whose set of boundary points of infinite type has Hausdorff two-dimensional measure equal to zero. On the other hand there are examples of domains with globally regular $\bar \partial$-Neumann operator but whose infinite-type points fill out an open subset of the boundary.References
- David E. Barrett, Regularity of the Bergman projection and local geometry of domains, Duke Math. J. 53 (1986), no. 2, 333–343. MR 850539, DOI 10.1215/S0012-7094-86-05321-4
- Steven R. Bell and Harold P. Boas, Regularity of the Bergman projection in weakly pseudoconvex domains, Math. Ann. 257 (1981), no. 1, 23–30. MR 630644, DOI 10.1007/BF01450652
- Steven Bell and David Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), no. 2, 385–396. MR 659947
- Steve Bell and Ewa Ligocka, A simplification and extension of Fefferman’s theorem on biholomorphic mappings, Invent. Math. 57 (1980), no. 3, 283–289. MR 568937, DOI 10.1007/BF01418930
- Harold P. Boas, The Szegő projection: Sobolev estimates in regular domains, Trans. Amer. Math. Soc. 300 (1987), no. 1, 109–132. MR 871667, DOI 10.1090/S0002-9947-1987-0871667-7
- Harold P. Boas, So-Chin Chen, and Emil J. Straube, Exact regularity of the Bergman and Szegő projections on domains with partially transverse symmetries, Manuscripta Math. 62 (1988), no. 4, 467–475. MR 971689, DOI 10.1007/BF01357722
- David W. Catlin, Global regularity of the $\bar \partial$-Neumann problem, Complex analysis of several variables (Madison, Wis., 1982) Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, RI, 1984, pp. 39–49. MR 740870, DOI 10.1090/pspum/041/740870
- David Catlin, Subelliptic estimates for the $\overline \partial$-Neumann problem on pseudoconvex domains, Ann. of Math. (2) 126 (1987), no. 1, 131–191. MR 898054, DOI 10.2307/1971347
- So-Chin Chen, Regularity of the Bergman projection on domains with partial transverse symmetries, Math. Ann. 277 (1987), no. 1, 135–140. MR 884651, DOI 10.1007/BF01457283 So-Chin Chen, Global regularity of the $\bar \partial$-Neumann problem on circular domains, preprint.
- John P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of Math. (2) 115 (1982), no. 3, 615–637. MR 657241, DOI 10.2307/2007015
- Jacqueline Détraz, Classes de Bergman de fonctions harmoniques, Bull. Soc. Math. France 109 (1981), no. 2, 259–268 (French, with English summary). MR 623793, DOI 10.24033/bsmf.1941
- Klas Diederich and John Erik Fornaess, Pseudoconvex domains: existence of Stein neighborhoods, Duke Math. J. 44 (1977), no. 3, 641–662. MR 447634
- Steven Bell and David Catlin, Boundary regularity of proper holomorphic mappings, Duke Math. J. 49 (1982), no. 2, 385–396. MR 659947
- Klas Diederich and John Erik Fornæss, Stein neighborhoods for finite preimages of regular domain, Manuscripta Math. 50 (1985), 11–27. MR 784137, DOI 10.1007/BF01168825
- G. B. Folland and J. J. Kohn, The Neumann problem for the Cauchy-Riemann complex, Annals of Mathematics Studies, No. 75, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1972. MR 0461588
- J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds. I, Ann. of Math. (2) 78 (1963), 112–148. MR 153030, DOI 10.2307/1970506
- J. J. Kohn, Global regularity for $\bar \partial$ on weakly pseudo-convex manifolds, Trans. Amer. Math. Soc. 181 (1973), 273–292. MR 344703, DOI 10.1090/S0002-9947-1973-0344703-4 —, A survey of the $\bar \partial$-Neumann problem, Proc. Sympos. Pure Math., vol. 41, Amer. Math. Soc., Providence, R.I., 1984, pp. 137-145.
- J. J. Kohn and L. Nirenberg, Non-coercive boundary value problems, Comm. Pure Appl. Math. 18 (1965), 443–492. MR 181815, DOI 10.1002/cpa.3160180305
- Ewa Ligocka, The regularity of the weighted Bergman projections, Seminar on deformations (Łódź/Warsaw, 1982/84) Lecture Notes in Math., vol. 1165, Springer, Berlin, 1985, pp. 197–203. MR 825756, DOI 10.1007/BFb0076154
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823
- I. Ramadanov, Sur une propriété de la fonction de Bergman, C. R. Acad. Bulgare Sci. 20 (1967), 759–762 (French). MR 226042
- R. Michael Range, The $\bar \partial$-Neumann operator on the unit ball in $\textbf {C}^{n}$, Math. Ann. 266 (1984), no. 4, 449–456. MR 735527, DOI 10.1007/BF01458539
- Nessim Sibony, Une classe de domaines pseudoconvexes, Duke Math. J. 55 (1987), no. 2, 299–319 (French). MR 894582, DOI 10.1215/S0012-7094-87-05516-5
- Emil J. Straube, Exact regularity of Bergman, Szegő and Sobolev space projections in nonpseudoconvex domains, Math. Z. 192 (1986), no. 1, 117–128. MR 835396, DOI 10.1007/BF01162025
- M. Tsuji, Potential theory in modern function theory, Chelsea Publishing Co., New York, 1975. Reprinting of the 1959 original. MR 0414898
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 569-578
- MSC: Primary 32F20; Secondary 35N15
- DOI: https://doi.org/10.1090/S0002-9939-1988-0943086-2
- MathSciNet review: 943086