Tutte polynomials and link polynomials
HTML articles powered by AMS MathViewer
- by François Jaeger
- Proc. Amer. Math. Soc. 103 (1988), 647-654
- DOI: https://doi.org/10.1090/S0002-9939-1988-0943099-0
- PDF | Request permission
Abstract:
We show how the Tutte polynomial of a plane graph can be evaluated as the "homfly" polynomial of an associated oriented link. Then we discuss some consequences for the partition function of the Potts model, the Four Color Problem and the time complexity of the computation of the homfly polynomial.References
- K. Appel and W. Haken, Every planar map is four colorable. I. Discharging, Illinois J. Math. 21 (1977), no. 3, 429–490. MR 543792
- Rodney J. Baxter, Exactly solved models in statistical mechanics, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1982. MR 690578
- Claude Berge, Graphes et hypergraphes, Collection Dunod Université, Série Violette, No. 604, Dunod, Paris-Brussels-Montreal, Que., 1973 (French). Deuxième édition. MR 0357171
- J. A. Bondy and U. S. R. Murty, Graph theory with applications, American Elsevier Publishing Co., Inc., New York, 1976. MR 0411988
- J. H. Conway, An enumeration of knots and links, and some of their algebraic properties, Computational Problems in Abstract Algebra (Proc. Conf., Oxford, 1967) Pergamon, Oxford, 1970, pp. 329–358. MR 0258014 J. R. Edmonds, Pictures of knots and construction of planar triangulations, Communication at the Third International Conference "Théorie des graphes et combinatoire," Marseille, June 1986.
- P. Freyd, D. Yetter, J. Hoste, W. B. R. Lickorish, K. Millett, and A. Ocneanu, A new polynomial invariant of knots and links, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 2, 239–246. MR 776477, DOI 10.1090/S0273-0979-1985-15361-3
- Michael R. Garey and David S. Johnson, Computers and intractability, A Series of Books in the Mathematical Sciences, W. H. Freeman and Co., San Francisco, Calif., 1979. A guide to the theory of NP-completeness. MR 519066
- Jim Hoste, A polynomial invariant of knots and links, Pacific J. Math. 124 (1986), no. 2, 295–320. MR 856165
- Vaughan F. R. Jones, A polynomial invariant for knots via von Neumann algebras, Bull. Amer. Math. Soc. (N.S.) 12 (1985), no. 1, 103–111. MR 766964, DOI 10.1090/S0273-0979-1985-15304-2
- V. F. R. Jones, A new knot polynomial and von Neumann algebras, Notices Amer. Math. Soc. 33 (1986), no. 2, 219–225. MR 830613
- Louis H. Kauffman, New invariants in the theory of knots, Astérisque 163-164 (1988), 6, 137–219, 282 (1989) (English, with French summary). On the geometry of differentiable manifolds (Rome, 1986). MR 999974
- Louis H. Kauffman, State models and the Jones polynomial, Topology 26 (1987), no. 3, 395–407. MR 899057, DOI 10.1016/0040-9383(87)90009-7 —, Statistical mechanics and the Jones polynomial, preprint.
- Louis H. Kauffman, Formal knot theory, Mathematical Notes, vol. 30, Princeton University Press, Princeton, NJ, 1983. MR 712133
- Kunio Murasugi, Jones polynomials and classical conjectures in knot theory, Topology 26 (1987), no. 2, 187–194. MR 895570, DOI 10.1016/0040-9383(87)90058-9
- Oystein Ore, The four-color problem, Pure and Applied Mathematics, Vol. 27, Academic Press, New York-London, 1967. MR 0216979
- H. N. V. Temperley and E. H. Lieb, Relations between the “percolation” and “colouring” problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the “percolation” problem, Proc. Roy. Soc. London Ser. A 322 (1971), no. 1549, 251–280. MR 498284, DOI 10.1098/rspa.1971.0067
- Morwen B. Thistlethwaite, A spanning tree expansion of the Jones polynomial, Topology 26 (1987), no. 3, 297–309. MR 899051, DOI 10.1016/0040-9383(87)90003-6
- W. T. Tutte, A ring in graph theory, Proc. Cambridge Philos. Soc. 43 (1947), 26–40. MR 18406, DOI 10.1017/s0305004100023173
- W. T. Tutte, A contribution to the theory of chromatic polynomials, Canad. J. Math. 6 (1954), 80–91. MR 61366, DOI 10.4153/cjm-1954-010-9
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 647-654
- MSC: Primary 57M25; Secondary 05C10, 57M15
- DOI: https://doi.org/10.1090/S0002-9939-1988-0943099-0
- MathSciNet review: 943099