Large automorphism groups of hyperelliptic Klein surfaces
HTML articles powered by AMS MathViewer
- by E. Bujalance and J. J. Etayo
- Proc. Amer. Math. Soc. 103 (1988), 679-686
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947639-7
- PDF | Request permission
Abstract:
In this paper we study the groups of automorphisms of all hyperelliptic bordered Klein surfaces of genus $p > 3$ having at least $4(p - 1)$ automorphisms.References
- Norman L. Alling and Newcomb Greenleaf, Foundations of the theory of Klein surfaces, Lecture Notes in Mathematics, Vol. 219, Springer-Verlag, Berlin-New York, 1971. MR 0333163 E. Bujalance, Proper periods of normal NEC subgroups with even index, Rev. Mat. Hisp.-Amer. (4) 41 (1981), 121-127.
- E. Bujalance and J. J. Etayo, Hyperelliptic Klein surfaces with maximal symmetry, Low-dimensional topology and Kleinian groups (Coventry/Durham, 1984) London Math. Soc. Lecture Note Ser., vol. 112, Cambridge Univ. Press, Cambridge, 1986, pp. 289–296. MR 903871
- E. Bujalance, J. J. Etayo, and J. M. Gamboa, Hyperelliptic Klein surfaces, Quart. J. Math. Oxford Ser. (2) 36 (1985), no. 142, 141–157. MR 790476, DOI 10.1093/qmath/36.2.141
- E. Bujalance, J. J. Etayo, and J. M. Gamboa, Groups of automorphisms of hyperelliptic Klein surfaces of genus three, Michigan Math. J. 33 (1986), no. 1, 55–74. MR 817909, DOI 10.1307/mmj/1029003290
- E. Bujalance and J. M. Gamboa, Automorphism groups of algebraic curves of $\textbf {R}^{n}$ of genus $2$, Arch. Math. (Basel) 42 (1984), no. 3, 229–237. MR 751500, DOI 10.1007/BF01191180 J. A. Bujalance, Normal subgroups of even index of an NEC group, Arch. Math. (to appear).
- A. H. M. Hoare and D. Singerman, The orientability of subgroups of plane groups, Groups—St. Andrews 1981 (St. Andrews, 1981) London Math. Soc. Lecture Note Ser., vol. 71, Cambridge Univ. Press, Cambridge, 1982, pp. 221–227. MR 679163, DOI 10.1017/CBO9780511661884.014
- Coy L. May, Automorphisms of compact Klein surfaces with boundary, Pacific J. Math. 59 (1975), no. 1, 199–210. MR 399451
- Coy L. May, A bound for the number of automorphisms of a compact Klein surface with boundary, Proc. Amer. Math. Soc. 63 (1977), no. 2, 273–280. MR 435385, DOI 10.1090/S0002-9939-1977-0435385-0
- Coy L. May, Cyclic automorphism groups of compact bordered Klein surfaces, Houston J. Math. 3 (1977), no. 3, 395–405. MR 457710
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 679-686
- MSC: Primary 20H10; Secondary 14H99, 30F10
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947639-7
- MathSciNet review: 947639