Near-fields associated with invariant linear $\kappa$-relations
HTML articles powered by AMS MathViewer
- by Peter Fuchs and C. J. Maxson
- Proc. Amer. Math. Soc. 103 (1988), 729-736
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947647-6
- PDF | Request permission
Abstract:
In this paper we investigate a construction method for subnearrings of $M\left ( G \right )$ proposed by H. Wielandt using subgroups of direct powers ${G^\kappa }$ of $G$ called invariant linear $\kappa$-relations. If $\kappa = 2$ we characterize, in terms of properties of these subgroups, when the associated near-rings are near-fields and prove that every near-field arising from an invariant linear $2$-relation must be a field.References
- C. J. Maxson and J. D. P. Meldrum, Centralizer representations of near-fields, J. Algebra 89 (1984), no. 2, 406–415. MR 751153, DOI 10.1016/0021-8693(84)90226-6
- J. D. P. Meldrum, Near-rings and their links with groups, Research Notes in Mathematics, vol. 134, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 854275
- Günter Pilz, Near-rings, 2nd ed., North-Holland Mathematics Studies, vol. 23, North-Holland Publishing Co., Amsterdam, 1983. The theory and its applications. MR 721171 R. Remak, Über die Darstellung der endlichen Gruppen als Untergruppen direkter Produkte, J. Reine Angew. Math. 163 (1930), 1-44. —, Über Untergruppen direkter Produkte von drei Faktoren, J. Reine Angew. Math. 166 (1932), 65-100. H. Wielandt, Permutation groups through invariant relations and invariant functions, Lecture Notes, Ohio State University, Columbus, 1969. —, How to single out function near-rings, Oberwolfach Abstracts, 1972.
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 729-736
- MSC: Primary 16A76; Secondary 12K05, 20E99
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947647-6
- MathSciNet review: 947647