## Yet more on the differentiability of convex functions

HTML articles powered by AMS MathViewer

- by John Rainwater
- Proc. Amer. Math. Soc.
**103**(1988), 773-778 - DOI: https://doi.org/10.1090/S0002-9939-1988-0947656-7
- PDF | Request permission

## Abstract:

Generic differentiability theorems are obtained for convex functions which are defined and locally Lipschitzian on the convex subset $N(C)$ of nonsupport points of a closed convex subset $C$ of a Banach space $E$, which is assumed to be either an Asplund space (for Fréchet differentiability) or to be weakly compactly generated (for Gateaux differentiability).## References

- Edgar Asplund,
*Fréchet differentiability of convex functions*, Acta Math.**121**(1968), 31–47. MR**231199**, DOI 10.1007/BF02391908 - Jens Peter Reus Christensen,
*Theorems of Namioka and R. E. Johnson type for upper semicontinuous and compact valued set-valued mappings*, Proc. Amer. Math. Soc.**86**(1982), no. 4, 649–655. MR**674099**, DOI 10.1090/S0002-9939-1982-0674099-0 - Joseph Diestel,
*Geometry of Banach spaces—selected topics*, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR**0461094**
John Giles, - Richard B. Holmes,
*Geometric functional analysis and its applications*, Graduate Texts in Mathematics, No. 24, Springer-Verlag, New York-Heidelberg, 1975. MR**0410335** - P. S. Kenderov,
*Monotone operators in Asplund spaces*, C. R. Acad. Bulgare Sci.**30**(1977), no. 7, 963–964. MR**463981** - I. Namioka,
*Separate continuity and joint continuity*, Pacific J. Math.**51**(1974), 515–531. MR**370466** - I. Namioka and R. R. Phelps,
*Banach spaces which are Asplund spaces*, Duke Math. J.**42**(1975), no. 4, 735–750. MR**390721** - R. R. Phelps,
*Some topological properties of support points of convex sets*, Israel J. Math.**13**(1972), 327–336 (1973). MR**328558**, DOI 10.1007/BF02762808 - Charles Stegall,
*A class of topological spaces and differentiation of functions on Banach spaces*, Proceedings of the conferences on vector measures and integral representations of operators, and on functional analysis/Banach space geometry (Essen, 1982) Vorlesungen Fachbereich Math. Univ. Essen, vol. 10, Univ. Essen, Essen, 1983, pp. 63–77. MR**730947** - C. Stegall,
*More Gâteaux differentiability spaces*, Banach spaces (Columbia, Mo., 1984) Lecture Notes in Math., vol. 1166, Springer, Berlin, 1985, pp. 186–199. MR**827772**, DOI 10.1007/BFb0074706 - Maria Elena Verona,
*More on the differentiability of convex functions*, Proc. Amer. Math. Soc.**103**(1988), no. 1, 137–140. MR**938657**, DOI 10.1090/S0002-9939-1988-0938657-3

*Convex analysis with application to differentiation of convex functions*, Research Notes in Math., no. 58, Pitman, Boston, Mass., 1982.

## Bibliographic Information

- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**103**(1988), 773-778 - MSC: Primary 46G05; Secondary 26B05, 46B22, 58C06, 90C48
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947656-7
- MathSciNet review: 947656