Construction of Hamilton sequences for certain Teichmüller mappings
HTML articles powered by AMS MathViewer
- by Edgar Reich
- Proc. Amer. Math. Soc. 103 (1988), 789-796
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947659-2
- PDF | Request permission
Abstract:
Suppose $\sup \{ |\iint _{\left | z \right | < 1} {\kappa (z)\varphi (z)dxdy|:\varphi (z)}$ analytic for $\left | z \right | < 1,\iint _{\left | z \right | < 1} {|\varphi (z)|dxdy = 1\} = {\text {ess}}\sup }\{ |\kappa (z)|:\left | z \right | < 1\}$. The question of constructive determination of extremal sequences $\{ \varphi _n \}$ is considered for some classes of functions $\kappa (z)$ that arise in connection with plane quasiconformal mappings. For example, such a sequence $\{ \varphi _n \}$ is constructed explicitly for the $\kappa (z)$ that arises in connection with the affine stretch of Strebel’s chimney domain.References
- W. K. Hayman and Edgar Reich, On Teichmüller mappings of the disk, Complex Variables Theory Appl. 1 (1982/83), no. 1, 1–12. MR 674357, DOI 10.1080/17476938208814002
- Edgar Reich and Kurt Strebel, Extremal quasiconformal mappings with given boundary values, Contributions to analysis (a collection of papers dedicated to Lipman Bers), Academic Press, New York, 1974, pp. 375–391. MR 0361065
- Edgar Reich, Quasiconformal mappings of the disk with given boundary values, Advances in complex function theory (Proc. Sem., Univ. Maryland, College Park, Md., 1973–1974) Lecture Notes in Math., Vol. 505, Springer, Berlin, 1976, pp. 101–137. MR 0419758
- G. C. Sethares, The extremal property of certain Teichmüller mappings, Comment. Math. Helv. 43 (1968), 98–119. MR 228674, DOI 10.1007/BF02564383
- Kurt Strebel, Zur Frage der Eindeutigkeit extremaler quasikonformer Abbildungen des Einheitskreises, Comment. Math. Helv. 36 (1961/62), 306–323 (German). MR 164032, DOI 10.1007/BF02566904
- Marvin Ortel, Extremal quasiconformal mappings with angular complex dilatation, Indiana Univ. Math. J. 31 (1982), no. 3, 435–447. MR 652827, DOI 10.1512/iumj.1982.31.31036
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 789-796
- MSC: Primary 30C60; Secondary 30C75
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947659-2
- MathSciNet review: 947659