WEAK* CONVERGENCE IN HIGHER DUALS
OF ORLICZ SPACES

DENNY H. LEUNG

(Communicated by William J. Davis)

ABSTRACT. It is shown that the spaces \((\Sigma \Theta E)_{l^\infty(\Gamma)}\) are Grothendieck spaces for a class of Banach lattices \(E\) which includes the Orlicz spaces with weakly sequentially complete duals.

A Banach space is said to be a Grothendieck space if weak* and weak sequential convergence coincide in the dual. The simplest nontrivial example of a Grothendieck space is \(l^\infty\). In [7], the question of when the space \((E \Theta l^p)_{l^\infty(\Gamma)}\) is Grothendieck is treated. In particular, it is shown there that \((E \Theta l^p)_{l^\infty(\Gamma)}\) is Grothendieck if \(2 \leq p \leq \infty\) and \(\Gamma\) is countable. In this paper, we extend this result to a class of Banach lattices which includes the Orlicz spaces with weakly sequentially complete duals. We close these introductory remarks by mentioning that H. P. Lotz [6] has shown recently that the weak \(L^p\) spaces are Grothendieck spaces.

1. Let us start by fixing some notation. Let \(E\) be a (real) Banach lattice, \(\Gamma\) an arbitrary index set, and \(F = (E \Theta E)_{l^\infty(\Gamma)}\). For \(x \in F\), we write \(x = (x(\gamma))\), where \(x(\gamma) \in E\) for every \(\gamma \in \Gamma\). If \(x' \in F'\) and \(A \subset \Gamma\), define \(x' x_A \in F'\) by \(\langle x, x' x_A \rangle = \langle x_A, x' \rangle\) for all \(x \in F\). It is easily seen that the equation \(\mu_{x'}(A) = \|x' x_A\|\) defines a finitely additive measure on \(\Gamma\); consequently, we may identify \(\mu_{x'}\) with an element of \(l^\infty(\Gamma)'\).

Lemma 1. If \((x'_n)\) is a positive weak* null sequence in \(F'\), then \((\mu_{x'_n})\) is relatively weakly compact in \(l^\infty(\Gamma)'\).

Proof. Let \(\mu_i = \mu_{x'_i}\). If \((\mu_i)\) is not relatively weakly compact, then there exist a partition \((A_i)\) of \(\Gamma\) and \(\varepsilon > 0\) such that \(\mu_i(A_i) > \varepsilon\) for all \(i\). By definition of \(\mu_i\), there is a positive normalized sequence \((x_i)\) of \(F\) such that \(x_i x_{A_i} = 0\) and \(\langle x_i, x_i' \rangle > \varepsilon\) for all \(i\). Let \(x = \sup_i x_i\). Then \(\|x\| = 1\) and \(\langle x, x_i' \rangle > \varepsilon\) for all \(i\), contrary to the fact that \((x'_i)\) is weak* null.

Theorem 2. Let \(E\) be a Banach lattice with positive cone \(E_+\). Suppose there exist a function \(\tau: E_+ \to [0, \infty]\) and a positive real number \(M\) with the following properties:
1. \(\tau(0) = 0\);
2. \(\|x\| \leq 1 \Rightarrow \tau(x) \leq M\);
3. For every disjoint sequence \((x_i)_{i=1}^n \subset E_+, \sum_{i=1}^n \tau(x_i) \leq M \tau(\sum_{i=1}^n x_i);\) and
4. For every sequence \((x_i)_{i=1}^\infty \subset E_+\) with \(\sum_i \tau(x_i) \leq 1\), \(\sup_i x_i\) exists and \(\|\sup_i x_i\| \leq M\).

Received by the editors February 2, 1987 and, in revised form, May 21, 1987.

©1988 American Mathematical Society 0002-9939/88 $1.00 + $.25 per page

797
Then, for any index set \(\Gamma \), every disjoint positive weak* null sequence \((x'_i)\) in \(F = (\Sigma \oplus E)_{\ell^\infty(\Gamma)} \) has a weakly Cauchy subsequence.

PROOF. Assume the contrary. We obtain a disjoint positive weak* null sequence \((x'_i)\) which is not weakly sequentially precompact. By Rosenthal's theorem, we may assume that \((x'_i)\) is equivalent to the \(l^1 \) basis. Since \((x'_i)\) is lattice isomorphic to \(l^1 \), there exist \(\varepsilon > 0 \) and a positive sequence \((x_{ij})_{i,j \geq 1} \subset F\) with the following properties:

(a) For every \(i \), \((x_{ij})_{1 \leq j \leq i}\) is a pairwise disjoint sequence such that \(\| \sum_{j \leq i} x_{ij} \| < 1 \); and

(b) \(\langle x_{ij}, x'_j \rangle > \varepsilon \) for \(1 \leq j \leq i \).

Define \(A_{ij} \subseteq \Gamma \) by \(A_{ij} = \{ \gamma | \tau(x_{ij}(\gamma)) \geq 1/\sqrt{i} \} \). Note that \(\| \sum_{j \leq i} x_{ij} \| < 1 \Rightarrow \| \sum_{j \leq i} x_{ij}(\gamma) \| < 1 \) for all \(\gamma \Rightarrow \tau(\sum_{j \leq i} x_{ij}(\gamma)) \leq M \). Hence \(\sum_{j \leq i} \tau(x_{ij}(\gamma)) \leq M^2 \) since the \(x_{ij} \)'s are disjoint. Thus

\[
\bigcap_{j \in B} A_{ij} = \emptyset
\]

for all \(B \subseteq \{1, 2, \ldots, i\} \) with \(\text{card } B > M^2 \sqrt{i} \). Recall the sequence \((\mu_i)\) as defined in the proof of Lemma 1. Fix \(i \) and let \(C_i = \{ j \leq i | \mu_j(A_{ij}) < \varepsilon/2 \} \). For \(j \in C_i \), we let \(z_j = x_{ij} \chi_{A_{ij}} \), then

\[
\langle z_j, x'_j \rangle \geq \langle x_{ij}, x'_j \rangle - \langle x_{ij}, x'_j \chi_{A_{ij}} \rangle \geq \varepsilon - \| x_{ij} \| \mu_j(A_{ij}) \geq \varepsilon/2
\]

while \(\tau(z_j(\gamma)) \leq 1/\sqrt{i} \) for all \(\gamma \) by definition of \(A_{ij} \). If \((\text{card } C_i)_{i=1}^\infty\) is unbounded, there exists an infinite subset \(I \) of \(\mathbb{N} \) such that for every \(i \in I \), there exists \(j_i \in C_i \) with the \(j_i \)'s distinct for different \(i \)'s. Without loss of generality, we may also assume that \(\sum_{i \in I} 1/\sqrt{i} \leq 1 \). Choose \(z_{j_i} \) as given above. Since

\[
\sum_{i} \tau(z_{j_i}(\gamma)) \leq \sum_{i \in I} \frac{1}{\sqrt{i}} \leq 1
\]

for all \(\gamma \), \(z(\gamma) \equiv \sup_{i} z_{j_i}(\gamma) \) exists for all \(\gamma \) and \(\| z(\gamma) \| \leq M \) by property (4). Hence \(z \equiv (z(\gamma)) \in F \). However,

\[
\langle z, x'_j \rangle \geq \langle z_{j_i}, x'_j \rangle \geq \varepsilon/2
\]

for all \(i \in I \), contrary to the fact that \((x'_i)\) is weak* null. Hence \((\text{card } C_i)_{i=1}^\infty\) is bounded by some constant \(K < \infty \). Now \((\mu_i)\) is relatively weakly compact in the AL-space \(l^\infty(\Gamma)' \) by Lemma 1, hence there exists \(0 \leq \mu \in l^\infty(\Gamma)' \) such that \((\mu_i) \subset [0, \mu] + (\varepsilon/4)U \), where \(U \) denotes the unit ball of \(l^\infty(\Gamma)' \). Let \(D_i = \{ j \leq i | \mu_j(A_{ij}) \geq \varepsilon/2 \} \) for every \(i \). By the above, \(\text{card } D_i \geq i - K \) for all \(i \). Also \(\mu(A_{ij}) \geq \varepsilon/4 \) for all \(j \in D_i \). Using equation (*), we see that

\[
\sum_{j \in D_i} \mu(A_{ij}) \leq M^2 \sqrt{i} \mu(\Gamma)
\]

for all \(i \) and hence \(\mu(\Gamma) \geq (\varepsilon/4M^2 \sqrt{i}) \text{card } D_i \geq (\varepsilon/4M^2 \sqrt{i})(i - K) \) for all \(i \). This contradiction proves the theorem.
WEAK* CONVERGENCE IN HIGHER DUALS OF ORLICZ SPACES

THEOREM 3. Let E be a countably order complete Banach lattice which satisfies a nontrivial upper estimate. If there is a function τ on E as in Theorem 2, then $F = (\Sigma \oplus E)_{l^\infty(\Gamma)}$ is a Grothendieck space.

PROOF. Because of the upper estimate condition on E, F' is weakly sequentially complete. By [2], it suffices to show that any disjoint positive weak* null sequence in F' is weakly null. But this follows from Theorem 2 and the weak sequential completeness of F'.

REMARK. Some condition in addition to the countable order completeness and the upper estimate has to be imposed on E in order for the conclusion of Theorem 3 to hold. In [3], a sequence of finite dimensional lattices (E_n) which satisfy a uniform upper p-estimate is constructed such that $F \equiv (\Sigma \oplus E_n)_{l^\infty(\Gamma)}$ is not Grothendieck. Hence $E \equiv (\Sigma \oplus F)_{l^2}$ satisfies an upper p-estimate and is obviously order complete while $(\Sigma \oplus E)_{l^\infty(\Gamma)}$ is not Grothendieck.

COROLLARY 4. Under the hypotheses of Theorem 3, all the even duals of E are Grothendieck spaces.

PROOF. By [1, Proposition 1.20], E'' is isomorphic to a complemented subspace of some ultraproduct $E_{\mathcal U}$; hence E'' is a quotient space of some $(\Sigma \oplus E)_{l^\infty(\Gamma)}$. Simple induction now shows that all even duals of E are quotients of (different) $(\Sigma \oplus E)_{l^\infty(\Gamma)}$. But quotients of Grothendieck spaces are themselves Grothendieck.

2. We now apply the results in §1 to Orlicz spaces.

DEFINITION 5. An Orlicz function φ is a continuous nondecreasing and convex function defined for $t > 0$ such that $\varphi(0) = 0$ and $\lim_{t \to \infty} \varphi(t) = \infty$.

DEFINITION 6. Let (Ω, Σ, μ) be a measure space and let φ be an Orlicz function, the space $L^\varphi(\Omega, \Sigma, \mu)$ is the Banach space consisting of all measurable functions f such that $\int \varphi(|f(x)|/\rho) d\mu(x) < \infty$ for some $\rho > 0$ with the norm $\|f\| = \inf \left\{ \rho > 0 \left| \int \varphi(|f(x)|/\rho) d\mu(x) \leq 1 \right. \right\}$.

For details concerning Orlicz spaces, we refer the reader to [4, 5]. Here, we only wish to point out that (1) every Orlicz space is obviously order complete, and (2) if an Orlicz space L^φ has a weakly sequentially complete dual, then it satisfies a nontrivial upper estimate. Now, if we define $\tau : (L^\varphi)_+ \to [0, \infty]$ by $\tau(f) = \int \varphi(f(x)) d\mu(x)$, then it is easily seen that τ satisfies the conditions in Theorem 2. Hence, by Theorem 3, we get

THEOREM 6. If L^φ has a weakly sequentially complete dual, then $(\Sigma \oplus L^\varphi)_{l^\infty(\Gamma)}$ is Grothendieck for every index set Γ. Consequently, all even duals of L^φ are Grothendieck.

REMARK. For $1 \leq p < \infty$, if we let $\varphi(t) = t^p$, then $L^\varphi = L^p$. Thus the results of Theorem 6 apply in particular to L^p for $1 < p < \infty$.

REFERENCES

DEPARTMENT OF MATHEMATICS, CATHOLIC UNIVERSITY OF AMERICA, WASHINGTON, D.C. 20064

Current address: Department of Mathematics, University of Texas at Austin, Austin, Texas 78712