Super-rigid families of strongly Blackwell spaces
HTML articles powered by AMS MathViewer
- by Manfred Droste
- Proc. Amer. Math. Soc. 103 (1988), 803-808
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947662-2
- PDF | Request permission
Abstract:
We construct a complete subfield $F$ of $P({\mathbf {R}})$, isomorphic to $P({\mathbf {R}})$, of pairwise non-Borel-isomorphic rigid strong Blackwell subsets of ${\mathbf {R}}$ such that there are only ’very few’ measurable functions between any two members of $F$. As a consequence, we obtain large chains and antichains of non-isomorphic rigid strong Blackwell subsets of ${\mathbf {R}}$. Also, there is a collection of continuously many dense subsets of ${\mathbf {R}}$ such that any two of them differ only by two elements, but none of them is a continuous image of any other.References
- K. P. S. Bhaskara Rao and B. V. Rao, Borel spaces, Dissertationes Math. (Rozprawy Mat.) 190 (1981), 63. MR 634451
- R. M. Shortt and K. P. S. Bhaskara Rao, Generalized Lusin sets with the Blackwell property, Fund. Math. 127 (1987), no. 1, 9–39. MR 883149, DOI 10.4064/fm-127-1-9-39
- David Blackwell, On a class of probability spaces, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, University of California Press, Berkeley-Los Angeles, Calif., 1956, pp. 1–6. MR 0084882
- Manfred Dugas and Rüdiger Göbel, Every cotorsion-free algebra is an endomorphism algebra, Math. Z. 181 (1982), no. 4, 451–470. MR 682667, DOI 10.1007/BF01182384 D. Fremlin, On Blackwell algebras (unpublished manuscript, 1980).
- J. Hoffmann-Jørgensen, The theory of analytic spaces, Various Publications Series, No. 10, Aarhus Universitet, Matematisk Institut, Aarhus, 1970. MR 0409748
- Jakub Jasiński, On the combinatorial properties of Blackwell spaces, Proc. Amer. Math. Soc. 93 (1985), no. 4, 657–660. MR 776198, DOI 10.1090/S0002-9939-1985-0776198-4
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165. MR 89999, DOI 10.1090/S0002-9947-1957-0089999-2
- M. Orkin, A Blackwell space which is not analytic, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 20 (1972), 437–438 (English, with Russian summary). MR 316655 D. Ramachandran, Perfect measures, Macmillan-India, New Delhi, 1979.
- Joseph G. Rosenstein, Linear orderings, Pure and Applied Mathematics, vol. 98, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982. MR 662564 H. Sarbadhikari, Some contributions to descriptive set theory, Thesis, Indian Statistical Institute, Calcutta, 1977.
- R. M. Shortt, Borel-dense Blackwell spaces are strongly Blackwell, Colloq. Math. 53 (1987), no. 1, 35–41. MR 890835, DOI 10.4064/cm-53-1-35-41
- R. M. Shortt, Notions of independence for random variables, Probab. Math. Statist. 8 (1987), 81–88. MR 928121
- Rae Michael Shortt, A separation principle for Blackwell sets, Bull. Polish Acad. Sci. Math. 34 (1986), no. 11-12, 643–645 (1987) (English, with Russian summary). MR 890608
- Wacław Sierpiński, Sur les types d’ordre des ensembles linéaires, Fund. Math. 37 (1950), 253–264 (French). MR 41909, DOI 10.4064/fm-37-1-253-264
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 803-808
- MSC: Primary 28A20; Secondary 28A05, 54C05, 60A99
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947662-2
- MathSciNet review: 947662