THE ONE-RADIUS THEOREM IS NOT TRUE FOR BOUNDED REAL-ANALYTIC FUNCTIONS

K. IZUCHI

(Communicated by Irwin Kra)

Dedicated to Professor Yukihiro Kodama on his 60th birthday

Abstract. There exists a bounded real-analytic function on the unit ball which does not satisfy Rudin's one-radius theorem.

Let B be the open unit ball in \mathbb{C}^N and S be the unit sphere in \mathbb{C}^N. Put $\overline{B} = B \cup S$. Let σ be the rotation-invariant positive Borel measure on S with $\sigma(S) = 1$. We denote by $\text{Aut}(B)$ the group of automorphisms in B. For a point a in B, ψ_a denotes the automorphism of B defined by

$$\psi_a(z) = \frac{a - P_a z - s_a Q_a z}{1 - \langle z, a \rangle} \quad \text{for } z \in B,$$

where P_a is the orthogonal projection of \mathbb{C}^N onto the subspace generated by a, $Q_a = I - P_a$, $s_a = (1 - |a|^2)^{1/2}$ and $(z, a) = \sum_{k=1}^{N} z_k \overline{a_k}$. For $f \in C^2(B)$ and $a \in B$, put

$$(\tilde{\Delta} f)(a) = \Delta(f \circ \psi_a)(0) = 4 \sum_{k=1}^{N} D_k \overline{D_k}(f \circ \psi_a)(0),$$

where $D_k = \partial / \partial z_k$ and $\overline{D_k} = \partial / \partial \overline{z_k}$. The operator $\tilde{\Delta}$ is called the invariant Laplacian. A function f in $C^2(B)$ with $\tilde{\Delta} f = 0$ is called \mathcal{M}-harmonic. A function f in $C(B)$, the space of continuous functions in B, is said to have the invariant mean value property if

$$f(\psi(0)) = \int_{S} f(\psi(\sigma)) d\sigma(\sigma)$$

for every $\psi \in \text{Aut}(B)$ and $0 < r < 1$.

It is well known that every \mathcal{M}-harmonic function in B has the invariant mean value property, and every $f \in C(B)$ with the invariant mean value property is \mathcal{M}-harmonic [1, p. 52]. Furthermore, Rudin proved that a much weaker mean value property implies \mathcal{M}-harmonicity as follows.

The one-radius theorem [1, p. 58]. Suppose $u \in C(\overline{B})$, and suppose that there corresponds to every $z \in B$ just one radius $r(z)$ ($0 < r(z) < 1$) such that

$$u(z) = \int_{S} u(\psi_z(r(z)\zeta)) d\sigma(\zeta).$$

Then u is \mathcal{M}-harmonic in B.
In [1, p. 58], Rudin posed the following problem; whether the above theorem is true for bounded real-analytic functions in \(B \). In this paper, we produce a bounded real-analytic function in \(B \) which gives a counterexample for the above problem.

Theorem. There exists a bounded real-analytic function \(F \) in \(B \) such that

(i) for each \(z \in B \), there is a radius \(r(z) \) \((0 < r(z) < 1) \) such that

\[
F(z) = \int_{s} F(\psi_{z}(r(z)\zeta)) \, d\sigma(\zeta),
\]

(ii) \(F \) is not \(\mathcal{A} \)-harmonic in \(B \).

To construct \(F \), first we produce a bounded holomorphic function in the open unit disk \(D \) in \(C \) having a certain property (Lemma 2). We denote by \(\text{A}(D) \) the disk algebra, the set of continuous functions in \(\overline{D} \), the closed unit disk in \(C \), which are holomorphic in \(D \). For a bounded holomorphic function \(f \) in \(D \) (or \(B \)), let \(||f||_{\infty} \) denote the supremum of \(|f| \) in \(D \). We shall say that a sequence of disjoint closed intervals \(\{I_{n}\}_{n=1}^{\infty} \) in \([0,1) \) converges to 1, put \(I_{n} = [r_{n}, R_{n}] \), if \(0 \leq r_{1} \leq R_{1} < r_{2} \leq R_{2} < \cdots \) and \(r_{n} \to 1 \) \((n \to \infty) \). For \(0 < R < 1 \), we put \(\{ |z| < R \} = \{ z \in C; \ |z| \leq R \} \).

Lemma 1. Let \(R, \delta, \sigma, \eta \) be positive constants with \(0 < R, \delta, \sigma, \eta < 1 \). Let \(f \) be a function in \(\text{A}(D) \) satisfying the following conditions.

\((i) \ ||f||_{\infty} < 1, \)

\((ii) \ f > 0 \) on \((-1,1)\) and \(f(1) = 0 \).

Let \(\{I_{n}\}_{n=1}^{\infty} \) be a sequence of disjoint closed intervals in \([0,1)\) which converges to 1. Then there exist \(g \in \text{A}(D) \), positive integers \(p \) and \(q \) \((p < q) \) such that

\((a) \ ||f + g||_{\infty} < 1, \)

\((b) \ g > 0 \) on \((-1,1)\), hence \(f + g > 0 \) on \((-1,1)\), and \(g(1) = 0 \),

\((c) \ |g| < \delta \) on \(\{ |z| \leq R \} \),

\((d) \ f + g < \sigma \) on \(I_{p} \), and

\((e) \ g > 1 - \eta \) on \(I_{q} \).

Proof. Let \(\varepsilon \) be a positive constant with \(0 < 3\varepsilon < \min\{\sigma, \eta\} \).

Let \(U \) be an open subset of \(C \) such that \(1 \in U \) and

\((2) \ |f| < \varepsilon \) on \(\overline{D} \cap U \).

By (ii), we may first choose a sufficient large positive integer \(p \) such that

\((3) \ f < \sigma/2 \) on \(I_{p} \).

Put

\(h(z) = 1/(2 - z) \) for \(z \in \overline{D} \).

Then \(h \in \text{A}(D) \), \(h(1) = 1 \), and

\((4) \ h > 0 \) on \((-1,1)\).

Since \(|h(z)| < 1 \) for \(z \in \overline{D} \) with \(z \neq 1 \) and \(||f||_{\infty} < 1 \), there exists a positive integer \(m \) such that

\((5) \ h^{m}(z) < \sigma/2 \) on \(I_{p} \),

\((6) \ |f| + |h^{m}| < 1 \) on \(\overline{D} \cap U \), and

\((7) \ |h^{m}| < \delta \) on \(\{ |z| \leq R \} \).
Since \(h^m(z) \to 1 \) \((z \to 1, z \in D)\), there exists a positive integer \(q \) with \(p < q \) such that
\[
(8) \quad h^m > 1 - \varepsilon \quad \text{on } I_q.
\]

For a real number \(\lambda \) with \(0 < \lambda < 1 \), put
\[
b_\lambda(z) = (z - \lambda)/(1 - \lambda z) \quad \text{for } z \in \overline{D}.
\]

Then for each compact subset \(K \) of \(\overline{D} \setminus \{1\} \), \(b_\lambda \) converges to \(-1\) uniformly on \(K \) with \(\lambda \to 1 \). Put
\[
F_\lambda(z) = (1 - b_\lambda(z))/2 \quad \text{for } z \in \overline{D}.
\]

Then
\[
(9) \quad F_\lambda \in A(D) \quad \text{and} \quad F_\lambda(1) = 0,
\]
\[
(10) \quad \|F_\lambda\|_\infty = 1, \quad \text{and}
\]
\[
(11) \quad F_\lambda > 0 \quad \text{on } (-1, 1).
\]

Since \(F_\lambda \to 1 \) uniformly on \(K \) \((\lambda \to 1)\), we may take \(\lambda, 0 < \lambda < 1 \), such that
\[
(12) \quad F_\lambda > 1 - \varepsilon \quad \text{on } I_q.
\]

Put
\[
(13) \quad g = (1 - \varepsilon)h^mF_\lambda.
\]

We shall show that \(g \) satisfies (a)-(e). By the definition of \(g \), \(g \in A(D) \) is clear.

On \(\overline{D} \setminus U \), we have
\[
|f + g| \leq |f| + (1 - \varepsilon)|h^m| |F_\lambda| \quad \text{by (13)}
\]
\[
< |f| + |h^m| < 1 \quad \text{by (10) and (6)}.
\]

On \(\overline{D} \cap U \), we have
\[
|f + g| \leq |f| + (1 - \varepsilon)|h^m| |F_\lambda|
\]
\[
< \varepsilon + (1 - \varepsilon) \quad \text{by (2) and (10)}
\]
\[
= 1.
\]

Thus \(g \) satisfies (a).

By (4) and (11), the first part of (b) is satisfied. By (ii) and (9), the second part of (b) is satisfied. By (7) and (10), (c) is satisfied. By (3), (5), (10) and (11), (e) is satisfied.

On \(I_q \), we have
\[
g = (1 - \varepsilon)h^mF_\lambda
\]
\[
> (1 - \varepsilon)^3 \quad \text{by (8) and (12)}
\]
\[
> 1 - 3\varepsilon
\]
\[
> 1 - \eta \quad \text{by (1)}.
\]

Thus \(g \) satisfies (e).
LEMMA 2. Let \(\{I_n\}_{n=1}^{\infty} \) be a sequence of disjoint closed intervals in \([0, 1)\) which converges to 1. Then there is a bounded holomorphic function \(G \) in \(D \), and there is a subsequence \(\{J_j\}_{j=1}^{\infty} \) of \(\{I_n\} \) such that

\((a)\) \(\|G\|_{\infty} \leq 1 \),
\((b)\) \(G > 0 \) on \((-1, 1)\),
\((c, j)\) \(\sup \{G(x); x \in J_{2j}\} < \inf \{G(x); x \in R, |x| \leq R_{2j-1}\} \) for \(j = 1, 2, \ldots \), where \(R_{2j-1} \) is the right end point of \(J_{2j-1} = [r_{2j-1}, R_{2j-1}] \), and
\((d, j)\) \(\inf \{G(x); x \in J_{2j+1}\} > \sup \{G(x); x \in R, |x| \leq R_{2j-1}\} \) for \(j = 1, 2, \ldots \).

PROOF. For a function \(f \) in \(D \) and \(0 < R < 1 \), we use the following notations.

\[\|f\|^{\text{inf}}_R = \sup \{|f(z)|; |z| \leq R\}, \]
\[\|f\|^{\text{sup}}_R = \inf \{|f(z)|; |z| \leq R\}. \]

Put \(J_1 = I_1 = [r_1, R_1] \). Let \(f(z) = (1 - z)/3 \) for \(z \in \overline{D} \). Then \(f \) satisfies the assumptions of Lemma 1. Applying Lemma 1 for \(R = R_1 \),

\[\delta = \frac{1}{3} \min \{|f|^{\text{inf}}_{R_1}, \frac{1}{2}(1 - \|f\|^{\text{sup}}_{R_1})\}, \]

\[\sigma = \frac{1}{3}\|f\|^{\text{inf}}_{R_1}, \text{ and } \eta = \frac{1}{2}(1 - \|f\|^{\text{sup}}_{R_1}), \]

there are \(g_1 \in A(D), J_2, J_3 \in \{I_n\} \) such that

\((1)\) \(\|f + g_1\|_{\infty} < 1 \),
\((2)\) \(g_1 > 0 \) on \((-1, 1)\); hence \(f + g_1 > 0 \) on \((-1, 1)\),
\((3)\) \((f + g_1)(z) \rightarrow 0 \quad (z \rightarrow 1) \),
\((4)\) \(|g_1| < \frac{1}{3} \min \{|f|^{\text{inf}}_{R_1}, \frac{1}{2}(1 - \|f\|^{\text{sup}}_{R_1})\} \) on \(\{z \in R_1\} \),
\((5)\) \(f + g_1 < \frac{1}{3}\|f\|^{\text{inf}}_{R_1} \) on \(J_2 \),
\((6)\) \(g_1 > \frac{1}{2}(1 + \|f\|^{\text{sup}}_{R_1}) \) on \(J_3 \).

By (1), (2) and (3), we may apply Lemma 1 again for \(R = R_3 \), where \(J_3 = [r_3, R_3] \). Hence there are \(g_2 \in A(D), J_4, J_5 \in \{I_n\} \) such that

\((7)\) \(\|f + g_1 + g_2\|_{\infty} < 1 \),
\((8)\) \(g_2 > 0 \) on \((-1, 1)\); hence \(f + g_1 + g_2 > 0 \) on \((-1, 1)\),
\((9)\) \((f + g_1 + g_2)(z) \rightarrow 0 \quad (z \rightarrow 1) \),
\((10)\) \(|g_2| < \frac{1}{3} \min \left\{ \left(\frac{1}{3} \right)^2 - i |f|^{\text{inf}}_{R_2}, \left(\frac{1}{3} \right)^3 - i \left(1 - \sum_{n=0}^{i-1} g_n \right)^{\text{sup}}_{R_2} \right\} \) on \(\{z \leq R_3\} \), where \(g_0 = 0 \),
\((11)\) \(f + g_1 + g_2 < \frac{1}{3}\|f\|^{\text{inf}}_{R_3} \) on \(J_4 \),
\((12)\) \(g_2 > \frac{1}{2}(1 + \|f + g_1\|^{\text{sup}}_{R_3}) \) on \(J_5 \).
We can continue this process successively. As a consequence, for each positive integer \(j \), there are \(g_j \in A(D), J_{2j}, J_{2j+1} \in \{ I_n \} \) such that

\[
\left\| f + \sum_{n=0}^{j} g_n \right\|_{\infty} < 1,
\]

\[
g_j > 0 \text{ on } (-1, 1); \text{ hence } f + \sum_{n=0}^{j} g_n > 0 \text{ on } (-1, 1),
\]

\[
\left(f + \sum_{n=0}^{j} g_n \right)(z) \to 0 \quad (z \to 1),
\]

\[
|g_j| < \frac{1}{3} \min \left\{ \left(\frac{1}{2} \right)^{j-i} \left\| f \right\|_{\text{inf} R_{2i-1}}, \left(\frac{1}{2} \right)^{j+1-i} \left(1 - \left\| f + \sum_{n=0}^{i-1} g_n \right\|_{\text{sup} R_{2i-1}} \right) \right\} ; \ i = 1, 2, \ldots, j \}
\]

on \(\{|z| \leq R_{2j-1}\} \),

\[
f + \sum_{n=0}^{j} g_n < \frac{1}{3} \left\| f \right\|_{\text{inf} R_{2j-1}} \text{ on } J_{2j},
\]

\[
g_j > \frac{1}{2} \left(1 + \left\| f + \sum_{n=0}^{j-1} g_n \right\|_{\text{sup} R_{2j-1}} \right) \text{ on } J_{2j+1}.
\]

By (16), \(|g_j| < \left(\frac{1}{2} \right)^j \left\| f \right\|_{\text{inf} R} \) on \(\{|z| \leq R_{2j-1}\} \). Since \(R_{2j-1} \to 1 \ (j \to \infty) \), \(\sum_{n=0}^{\infty} g_n \) converges absolutely on every compact subset of \(D \). Thus we may put

\[
G(z) = f(z) + \sum_{n=0}^{\infty} g_n(z) \quad \text{for } z \in D.
\]

Then \(G \) is a holomorphic function in \(D \). By (13), \(G \) satisfies (a). By (14), \(G \) satisfies (b).

We have

\[
\sup \{ G(x); x \in J_{2j} \}
\]

\[
\leq \sup \left\{ \left(f + \sum_{n=0}^{j} g_n \right)(x); x \in J_{2j} \right\} + \sup \left\{ \left(\sum_{n=j+1}^{\infty} g_n \right)(x); x \in J_{2j} \right\}
\]

\[
\leq \frac{1}{3} \left\| f \right\|_{\text{inf} R_{2j-1}} + \sum_{n=j+1}^{\infty} \|g_n\|_{\text{sup} R_{2n-1}} \text{ by (17)}
\]

(since \(J_{2j} \subset \{|z| \leq R_k\} \) for \(k \geq 2(j+1) - 1 \))

\[
\leq \frac{1}{3} \left\| f \right\|_{\text{inf} R_{2j-1}} + \sum_{n=j+1}^{\infty} \left(\frac{1}{2} \right)^{n+1-j} \left\| f \right\|_{\text{inf} R_{2j-1}} \text{ by (16)}
\]

\[
\leq \left\| f \right\|_{\text{inf} R_{2j-1}} \sum_{k=1}^{\infty} \left(\frac{1}{2} \right)^k = \frac{1}{2} \left\| f \right\|_{\text{inf} R_{2j-1}}.
\]
While we have
\[\inf \{ G(x); x \in R, |x| \leq R_{2j-1} \} \]
\[= \inf \left\{ \left(f + \sum_{n=0}^{\infty} g_n \right)(x); x \in R, |x| \leq R_{2j-1} \right\} \]
\[\geq \inf \{ f(x); x \in R, |x| \leq R_{2j-1} \} \quad \text{by (14)} \]
\[= \inf \{|f(x)|; |x| \leq R_{2j-1} \} \]
\[= \| f \|_{R_{2j-1}}^{\infty}. \]

Hence \(G \) satisfies (c, j).

We get
\[\inf \{ G(x); x \in J_{2j+1} \} \]
\[= \inf \left\{ \left(f + \sum_{n=0}^{\infty} g_n \right)(x); x \in J_{2j+1} \right\} \]
\[\geq \inf \{ g_j(x); x \in J_{2j+1} \} \quad \text{by (14) and } f > 0 \text{ on } (-1, 1) \]
\[> \frac{1}{2} \left(1 + \left\| f + \sum_{n=0}^{j-1} g_n \right\|_{R_{2j-1}}^{\sup} \right) \quad \text{by (18)}. \]

While we get
\[\sup \{ G(x); x \in R, |x| \leq R_{2j-1} \} \]
\[= \sup \left\{ \left(f + \sum_{n=0}^{\infty} g_n \right)(x); x \in R, |x| \leq R_{2j-1} \right\} \]
\[\leq \left\| f + \sum_{n=0}^{j-1} g_n \right\|_{R_{2j-1}}^{\sup} + \sum_{n=j+1}^{\infty} \| g_n \|_{R_{2j-1}}^{\sup} \]
\[\leq \left\| f + \sum_{n=0}^{j-1} g_n \right\|_{R_{2j-1}}^{\sup} + \frac{1}{6} \left(1 - \left\| f + \sum_{n=0}^{j-1} g_n \right\|_{R_{2j-1}}^{\sup} \right) \]
\[+ \frac{1}{3} \sum_{n=j+1}^{\infty} \left(\frac{1}{2} \right)^{n+1-j} \left(1 - \left\| f + \sum_{n=0}^{j-1} g_n \right\|_{R_{2j-1}}^{\sup} \right) \]
\[(\text{by (16) and } R_{2j-1} \subset R_k \text{ for } k \geq 2(j+1) - 1) \]
\[\leq \left\| f + \sum_{n=0}^{j-1} g_n \right\|_{R_{2j-1}}^{\sup} + \frac{1}{3} \left(1 - \left\| f + \sum_{n=0}^{j-1} g_n \right\|_{R_{2j-1}}^{\sup} \right) \]
\[= \frac{1}{3} \left(1 + 2 \left\| f + \sum_{n=0}^{j-1} g_n \right\|_{R_{2j-1}}^{\sup} \right). \]

Since \(\left\| f + \sum_{n=0}^{j-1} g_n \right\|_{R_{2j-1}}^{\sup} < 1 \), we have
\[\frac{1}{3} \left(1 + 2 \left\| f + \sum_{n=0}^{j-1} g_n \right\|_{R_{2j-1}}^{\sup} \right) < \frac{1}{2} \left(1 + \left\| f + \sum_{n=0}^{j-1} g_n \right\|_{R_{2j-1}}^{\sup} \right), \]

hence \(G \) satisfies (d, j). This completes the proof.
Proof of Theorem. First, we shall construct a sequence of disjoint closed intervals \(\{I_n\}_{n=1}^{\infty} \) in \([0, 1)\) which converges to 1 and satisfying specific conditions by induction.

For \(a \in B \) and \(0 < r < 1 \), \(\psi_a(rB) \) is an ellipsoid in \(B \) and

\[
\psi_a(rB) = \left\{ z \in B; \frac{|P_a z - c|^2}{r^2 \rho^2} + \frac{|Q_a z|^2}{r^2 \rho} < 1 \right\}
\]

where

\[
c = \frac{(1 - r^2)a}{1 - r^2|a|^2} \quad \text{and} \quad \rho = \frac{1 - |a|^2}{1 - r^2|a|^2}
\]

(see [1, pp. 29-30]). Since \(\psi_a \) is an automorphism \(B = \bigcup \{ \psi_a(rB); 0 < r < 1 \} \) and \(\psi_a(r_1B) \subset \psi_a(r_2B) \) if \(0 < r_1 < r_2 < 1 \). For \(0 < R < 1 \), put

\[
\{|z| \leq R\} = \left\{ z \in C^N; |z| = \left(\sum_{k=1}^{N} |z_k|^2 \right)^{1/2} \leq R \right\}.
\]

Here we use the following notation:

\[
Q(R) = \sup_{|z| \leq R} \inf \{ \xi; 0 < \xi < 1, \psi_x(\xi B) \supset \{|z| \leq R^{1/2}\} \}.
\]

By the definition of \(\psi_x \), \(Q(R) < 1 \) and \(Q(R) \to 1 \) (\(R \to 1 \)). Let \(\xi_0 \) be with \(Q(R) < \xi_0 < 1 \). Since \(\psi_x(\xi_0 S) \) is a continuous function in \((z, \eta) \in B \times S, \bigcup \{ \psi_x(\xi_0 S); |z| \leq R \} \) is a connected set, hence \(\{|w|^2; w \in \bigcup \{ \psi_x(\xi_0 S); |z| \leq R \} \} \) is a compact subinterval of \([0, 1)\). By the definition of \(Q(R) \), the above interval is disjoint with the interval \([0, R]\). If we take \(\xi_0 \) sufficiently close to 1, then the above interval is close to 1.

Using these properties, we shall choose \(\{I_n\} \). We take \(I_1 = [r'_1, R'_1] \) arbitrary with \(0 \leq r'_1 < R'_1 < 1 \). Take \(\xi_1 \) as \(Q(R'_1) < \xi_1 < 1 \). Put

\[
I_2 = \left\{ |w|^2; w \in \bigcup \{ \psi_x(\xi_1 S); |z| \leq R'_1 \} \right\}.
\]

Then \(I_2 \) is a compact interval with \(I_2 \subset [0, 1) \) and \(I_1 \cap I_2 = \emptyset \). Put \(I_2 = [r'_2, R'_2] \) and take \(\xi_2 \) as \(Q(R'_2) < \xi_2 < 1 \). Put

\[
I_3 = \left\{ |w|^2; w \in \bigcup \{ \psi_x(\xi_2 S); |z| \leq R'_2 \} \right\}.
\]

Continuing this process, we can take a sequence of disjoint intervals \(\{I_n\} \) such that

\[
I_n = \left\{ |w|^2; w \in \bigcup \{ \psi_x(\xi_{n-1} S); |z| \leq R'_{n-1} \} \right\},
\]

where \(I_{n-1} = [r'_{n-1}, R'_{n-1}] \) and \(Q(R'_{n-1}) < \xi_{n-1} < 1 \). Since we may take \(\xi_n \) as \(\xi_n \to 1 \), \(\{I_n\} \) converges to 1. This completes the construction of \(\{I_n\} \).

By Lemma 2, there exist a bounded holomorphic function \(G \) on \(D \) and a subsequence \(\{J_j\}_{j=1}^{\infty} \) of \(\{I_n\} \) satisfying the assertion of Lemma 2. We put \(J_j = [r_j, R_j] \). By our construction, for each positive integer \(j \), there exist positive constants \(\delta_j \) and \(\sigma_j \) with \(0 < \delta_j, \sigma_j < 1 \) such that

\[
(1) \quad J_{2j} \supset \left\{ |w|^2; w \in \bigcup \{ \psi_x(\delta_j S); |z| \leq R_{2j-1} \} \right\},
\]

\[
(2) \quad J_{2j+1} \supset \left\{ |w|^2; w \in \bigcup \{ \psi_x(\sigma_j S); |z| \leq R_{2j-1} \} \right\}.
\]
Put

\[F(z) = G(|z|^2), \quad \text{for } z \in B. \]

We shall show that \(F \) is a desired function. By (b) of Lemma 2, \(G(\cdot, 1) \) is a positive real-analytic function on \((-1, 1)\). Since \(1 > |z|^2 = \sum_{k=1}^{N} x_k^2 + y_k^2 \), where \(z = (z_1, z_2, \ldots, z_N) \) and \(z_k = x_k + iy_k \), \(F(z) \) is a bounded real-analytic function in \(B \).

To show (i), let \(z \in B \). Then \(|z| \leq R_{2j-1} \) for some \(j \). Then we have

\[
\int_{S} F(\psi_z(\delta_j \zeta)) \, d\sigma(\zeta) = \int_{S} G(|\psi_z(\delta_j \zeta)|^2) \, d\sigma(\zeta) \\
\leq \sup\{G(x); x \in J_{2j}\} \quad \text{by (1)} \\
< \inf\{G(x); x \in R, |x| \leq R_{2j-1}\} \quad \text{by (c, j) of Lemma 2} \\
\leq G(|z|^2) \quad \text{(since } |z|^2 \leq |z| \leq R_{2j-1}) \\
= F(z).
\]

On the other hand, we get

\[
\int_{S} F(\psi_z(\sigma_j \zeta)) \, d\sigma(\zeta) = \int_{S} G(|\psi_z(\sigma_j \zeta)|^2) \, d\sigma(\zeta) \\
\geq \inf\{G(x); x \in J_{2j+1}\} \quad \text{by (2)} \\
> \sup\{G(x); x \in R, |x| \leq R_{2j-1}\} \quad \text{by (d, j) of Lemma 2} \\
\geq G(|z|^2) \quad \text{(since } |z|^2 \leq R_{2j-1}) \\
= F(z).
\]

Thus we get

\[
\int_{S} F(\psi_z(\delta_j \zeta)) \, d\sigma(\zeta) \leq F(z) \leq \int_{S} F(\psi_z(\sigma_j \zeta)) \, d\sigma(\zeta).
\]

Since \(\int_{S} F(\psi_z(r \zeta)) \, d\sigma(\zeta) \) is a continuous function with a variable \(r, 0 < r < 1 \), there exists \(r(z), 0 < r(z) < 1 \), such that

\[
F(z) = \int_{S} F(\psi_z(r(z) \zeta)) \, d\sigma(\zeta).
\]

Thus \(F \) satisfies (i) of Theorem. Since

\[
\int_{S} F(\psi_z(\sigma_j \zeta)) \, d\sigma(\zeta) > F(z)
\]

by the above estimates, \(F \) does not have the invariant mean value property. Hence \(F \) is not \(\mathcal{M} \)-harmonic. This completes the proof.

REFERENCES

DEPARTMENT OF MATHEMATICS, KANAGAWA UNIVERSITY, YOKOHAMA 221, JAPAN