Generating functions for relatives of classical polynomials
HTML articles powered by AMS MathViewer
- by P. D. Barry and D. J. Hurley
- Proc. Amer. Math. Soc. 103 (1988), 839-846
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947668-3
- PDF | Request permission
Abstract:
For several classical polynomials ${u_n}(x)$ satisfying a second order linear differential equation ${D_n}(x)$, there is a generating function $u(x,t) = \sum \nolimits _{n = 0}^\infty {{u_n}(x){t^n}}$. We provide expansions $\upsilon (x,t) = \sum \nolimits _{n = 0}^\infty {{\upsilon _n}(x){t^n}}$ where ${\upsilon _n}(x)$ is a second solution of ${D_n}(x)$.References
- M. Abramowitz and I. A. Stegun, Handbook of mathematical functions, Dover, New York, 1965.
- Arthur Erdélyi, Wilhelm Magnus, Fritz Oberhettinger, and Francesco G. Tricomi, Higher transcendental functions. Vol. III, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1955. Based, in part, on notes left by Harry Bateman. MR 0066496
- Elna B. McBride, Obtaining generating functions, Springer Tracts in Natural Philosophy, Vol. 21, Springer-Verlag, New York-Heidelberg, 1971. MR 0279355
- H. M. Srivastava and H. L. Manocha, A treatise on generating functions, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1984. MR 750112
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 839-846
- MSC: Primary 33A99; Secondary 05A15
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947668-3
- MathSciNet review: 947668