## Growth properties of $p$th means of potentials in the unit ball

HTML articles powered by AMS MathViewer

- by S. J. Gardiner
- Proc. Amer. Math. Soc.
**103**(1988), 861-869 - DOI: https://doi.org/10.1090/S0002-9939-1988-0947671-3
- PDF | Request permission

## Abstract:

Let $v$ be a potential in the unit ball of ${{\mathbf {R}}^n}$, and ${\mathcal {M}_p}(v;r)$ be its $p$th order mean over the sphere of radius $r$ centred at the origin. It is shown that, as $r \to 1 -$, the function $f(r) = {(1 - r)^{(n - 1)(1 - 1/p)}}{\mathcal {M}_p}(v;r)$ has limit 0 when $1 \leq p{\text { < }}(n - 1)/(n - 2)$, and has lower limit 0 when $n \geq 3$ and $(n - 1)/(n - 2) \leq p{\text { < }}(n - 1)/(n - 3)$. This extends a result of Stoll, who showed that, when $n = 2$ and $p = + \infty ,\lim {\inf _{r \to 1 - }}f(r) = 0$. Examples are given to show that the theorems presented are best possible.## References

- Maurice Heins,
*The minimum modulus of a bounded analytic function*, Duke Math. J.**14**(1947), 179β215. MR**20639** - W. C. Nestlerode and M. Stoll,
*Radial limits of $n$-subharmonic functions in the polydisc*, Trans. Amer. Math. Soc.**279**(1983), no.Β 2, 691β703. MR**709577**, DOI 10.1090/S0002-9947-1983-0709577-4 - Joel H. Shapiro and Allen L. Shields,
*Unusual topological properties of the Nevanlinna class*, Amer. J. Math.**97**(1975), no.Β 4, 915β936. MR**390227**, DOI 10.2307/2373681 - M. Stoll,
*Boundary limits of subharmonic functions in the disc*, Proc. Amer. Math. Soc.**93**(1985), no.Β 3, 567β568. MR**774024**, DOI 10.1090/S0002-9939-1985-0774024-0 - Manfred Stoll,
*Boundary limits of Green potentials in the unit disc*, Arch. Math. (Basel)**44**(1985), no.Β 5, 451β455. MR**792369**, DOI 10.1007/BF01229328

## Bibliographic Information

- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**103**(1988), 861-869 - MSC: Primary 31B25
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947671-3
- MathSciNet review: 947671