ABSTRACT. Let \(v \) be a potential in the unit ball of \(\mathbb{R}^n \), and \(\mathcal{M}_p(v; r) \) be its \(p \)th order mean over the sphere of radius \(r \) centred at the origin. It is shown that, as \(r \to 1^- \), the function \(f(r) = (1 - r)^{(n-1)/(n-2)} \mathcal{M}_p(v; r) \) has limit 0 when \(1 \leq p < (n-1)/(n-2) \), and has lower limit 0 when \(n \geq 3 \) and \((n-1)/(n-2) \leq p < (n-1)/(n-3) \). This extends a result of Stoll, who showed that, when \(n = 2 \) and \(p = +\infty \), \(\lim\inf_{r \to 1^-} f(r) = 0 \). Examples are given to show that the theorems presented are best possible.

1. Introduction and results.

THEOREM A. If \(v \) is a (Green) potential in the unit disc, then
\[
\liminf_{r \to 1^-} \sup_{0 \leq \theta < 2\pi} v(re^{i\theta}) = 0.
\]

In the special case where \(v = -\log |B| \) and \(B \) is a convergent Blaschke product in the unit disc, Theorem A is due to Heins [1] (see also [3]). The result for general potentials was only recently established by Stoll [4] (see also [2]). It does not have an obvious analogue for potentials in the unit ball of \(\mathbb{R}^n \) \((n \geq 3) \), for such functions can be valued identically \(+\infty \) on a given radius.

We denote an arbitrary point of Euclidean space \(\mathbb{R}^n \) \((n \geq 2) \) by \(X = (x_1, \ldots, x_n) \) and put \(|X| = (x_1^2 + \cdots + x_n^2)^{1/2} \). Let
\[
B(r) = \{X \in \mathbb{R}^n : |X| < r\}, \quad S(r) = \{X \in \mathbb{R}^n : |X| = r\},
\]
\[
A(r_1, r_2) = \{X \in \mathbb{R}^n : r_1 < |X| < r_2\},
\]
and let \(\sigma \) denote normalized surface area measure on \(S(r) \). If \(f \) is a nonnegative measurable function on \(S(r) \), define
\[
\mathcal{M}_p(f; r) = \left\{ \int_{S(r)} f^p d\sigma \right\}^{1/p} \quad (p > 0)
\]
and
\[
\mathcal{M}_\infty(f; r) = \sup \{f(X) : X \in S(r)\}.
\]

As will be seen below, Theorem A has the following analogue in higher dimensions:
\[
\liminf_{r \to 1^-} (1 - r)^{-(n-1)/(n-2)} \mathcal{M}_\infty(v; r) = 0
\]
for any potential \(v \) in \(B(1) \). However, recalling the well-known property that
\[M_1(v; r) \to 0 \quad \text{as} \quad r \to 1^- \], it is natural to consider the limiting behaviour of \(M_p(v; \cdot) \) for other values of \(p \). This leads to the following results.

Theorem 1. If \(v \) is a potential in \(B(1) \subset \mathbb{R}^n \) (\(n \geq 2 \)), and \(1 < p < (n - 1)/(n - 2) \), then

\[(1 - r)^{(n-1)(1-1/p)}M_p(v; r) \to 0 \quad (r \to 1^-). \]

Theorem 2. If \(v \) is a potential in \(B(1) \subset \mathbb{R}^n \) (\(n \geq 3 \)), and \((n - 1)/(n - 2) < p < (n - 1)/(n - 3) \), then

\[\liminf_{r \to 1^-} (1 - r)^{(n-1)(1-1/p)}M_p(v; r) = 0. \]

In later sections of the paper we prove Theorems 1 and 2 using ideas from another paper by Stoll [5]. First we mention some examples to show that these results are best possible.

Example 1. If \(0 < p < 1 \) and \(v \) is a potential in \(B(1) \subset \mathbb{R}^n \) (\(n \geq 2 \)), it is a simple consequence of Jensen's inequality that
\[JKPiv; r) \to 0 \quad \text{as} \quad r \to 1^- \]. However, neither (1) nor (2) hold. To see this, let \(\beta = \min\{1, (n - 1)(1/p - 1)\} \). Since \((1 - |X|) \) is a potential in \(B(1) \) and \(\beta \in (0,1] \), it follows easily that \(v_0(X) = (1 - |X|)^\beta \) is also a potential in \(B(1) \), but

\[(1 - r)^{(n-1)(1-1/p)}M_p(v_0; r) \geq 1 \quad (0 < r < 1). \]

Example 2. If \(n \geq 3 \), there is a potential \(v \) in \(B(1) \) such that \(M_p(v; r) \equiv +\infty \) for all \(p > (n - 1)/(n - 3) \). In fact, if \(n = 3 \), let \(u(X) = -\log(x_2^2 + x_3^2) \), let \(h \) be the greatest harmonic minorant of \(u \) in \(B(1) \), and define \(v = u - h \). Then \(v \) is a potential and it is easy to see that \(M_\infty(v; r) \equiv +\infty \). If \(n \geq 4 \), let \(u(X) = (x_2^2 + \cdots + x_n^2)^{(3-n)/2} \), and define the corresponding potential \(v \) as before. Straightforward estimates show that \(M_p(v; r) \equiv +\infty \) for \(p > (n - 1)/(n - 3) \).

It is also easy to see that, if \((n - 1)/(n - 2) \leq p < (n - 1)/(n - 3) \) and the measure associated with a potential \(v \) in \(B(1) \) comprises point masses arbitrarily close to \(S(1) \), then

\[\limsup_{r \to 1^-} (1 - r)^{(n-1)(1-1/p)}M_p(v; r) = +\infty. \]

Example 3. Theorems 1 and 2 fail if we replace "potential" by "positive superharmonic function". To see this, let \(h \) be the positive harmonic function given by

\[h(X) = (1 - |X|^2)||X - (1,0,\ldots,0)||^{-n} \quad (X \in B(1)), \]

and let \(p \geq 1 \). Then \((1 - r)^{(n-1)(1-1/p)}M_p(h; r) \) has a finite positive limit as \(r \to 1^- \). However, Theorems 1 and 2 do hold for positive superharmonic functions which do not majorize any positive multiple of a Poisson kernel. Details are given in §§5.1, 5.2.

Example 4. If \(\varepsilon > 0 \) and \(p \geq 1 \), then there is a potential \(v \) in \(B(1) \) such that

\[(1 - r)^{(n-1)(1-1/p)} M_p(v; r) \to +\infty \quad (r \to 1^-). \]

Details may be found in §5.3.
2. Two preliminary lemmas.

2.1. Let \(O \) denote the origin of \(\mathbb{R}^n \) and \(X^* \) be the image of a point \(X \) under inversion of centre \(O \) and radius 1. We use \(G(\cdot, \cdot) \) to denote the Green kernel of \(B(1) \) so that, in the case \(n = 2 \),

\[
G(X, Y) = \begin{cases}
- \log |Y - X| + \log(|X| \cdot |Y - X^*|) & (X \neq O), \\
- \log |Y| & (X = O),
\end{cases}
\]

and in the case \(n \geq 3 \),

\[
G(X, Y) = \begin{cases}
|Y - X|^{2-n} - (|X| \cdot |Y - X^*|)^{2-n} & (X \neq O), \\
|Y|^2 - n - 1 & (X = O).
\end{cases}
\]

We recall that there is a one-to-one correspondence between potentials \(v \) on \(B(1) \) and measures \(\mu \) on \(B(1) \) which satisfy

\[
(3) \quad \int_{B(1)} (1 - |Y|) \, d\mu(Y) < +\infty.
\]

For the remainder of §2, we will assume that either \(n = 2 \) and \(p > 1 \), or \(n \geq 3 \) and \(1 < p < (n - 1)/(n - 3) \). It will be convenient to let \(\alpha = (n - 1)(1 - p^{-1}) \), which clearly lies in the interval \((0, 1)\) when \(n = 2 \), and \((0, 2)\) when \(n \geq 3 \). Also, \(C(a, b, c, \ldots) \) will denote a positive constant depending at most on \(a, b, c, \ldots \), not necessarily the same on any two occurrences.

2.2. Let \(E(r) = A((5r-1)/4, (3r+1)/4) \) so that, if \(y \in B(1) \setminus E(r) \) and \(X \in S(r) \), then \(|Y - X| \geq ||Y| - r| > (1 - r)/4\).

Lemmas 1. If \(p, \alpha \) are as above and \(\mu \) is a measure on \(B(1) \) satisfying (3), then

\[
(1 - r)^\alpha \int_{B(1) \setminus E(r)} \mathcal{M}_p(G(\cdot, Y); r) \, d\mu(Y) \to 0 \quad (r \to 1^-).
\]

To see this, let \(|X| = r \) and \(Y \in B(1) \setminus E(r) \). If \(n \geq 3 \), then

\[
G(X, Y) = \begin{cases}
|Y - X| \cdot |rY - r^{-1}X|^{2-n} \cdot |rY - r^{-1}X|^{n-2} - |Y - X|^{n-2} \\
2^{-1}(n-2)|Y - X|^{-n} \cdot |rY - r^{-1}X|^2 - |Y - X|^2
\end{cases}
\]

\[
\leq 2^{\alpha-1}(n-2)(1-r)^{-\alpha}|Y - X|^{\alpha-n}|rY - r^{-1}X|^2 - |Y - X|^2.
\]

If \(n = 2 \), then

\[
G(X, Y) = \log(|rY - r^{-1}X|/|Y - X|)
\]

\[
\leq |Y - X|^{-1} \cdot |rY - r^{-1}X| - |Y - X|)
\]

\[
\leq 2^{2\alpha-1}(1-r)^{-\alpha}|Y - X|^{\alpha-2}|rY - r^{-1}X|^2 - |Y - X|^2.
\]

Thus, letting \(\rho = |Y| \) we have, for any \(n \geq 2 \),

\[
\int_{S(r)} [G(X, Y)]^p \, d\sigma(X) \leq C(n, p)(1 - r)^{-\alpha p}
\]

\[
\times \int_0^\pi \sin^{n-2} \theta \{(\rho - r \cos \theta)^2 + (r \sin \theta)^2\}^{(1-n-p)/2} \{(1 - r^2)(1 - \rho^2)\}^p \, d\theta
\]

\[
= C(n, p)(1 - r)^{-\alpha p} \{(1 - r^2)(1 - \rho^2)\}^p
\]

\[
\times \int_0^\infty t^{n-2}(1 + t^2)^{(p+1-n)/2} \{(\rho - r)^2 + (\rho + r)^2\}^{(1-n-p)/2} \, dt,
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
using the substitution \(t = \tan(\theta/2) \). Hence, if \(\kappa = |\rho - r|/(\rho + r) \) and \(r > \frac{1}{2} \),
\[
(1 - r)^\alpha \mathcal{M}_p(G(\cdot, Y); r)^p
\leq C(n, p) \frac{(1 - r)(1 - \rho)}{(1 - r)(1 - \rho)/\kappa)^p}
\int_0^\infty t^{n-2}(1 + t^2)^{(p+1-n)/2}(\kappa^2 + t^2)^{(1-n-p)/2} dt
= C(n, p) \frac{(1 - r)(1 - \rho)/\kappa)^p}{(1 - r)(1 - \rho)}
\times \int_0^\infty x^{n-2}(1 + x^2)^{(p+1-n)/2}(1 + x^2)^{(1-n-p)/2} dx
\leq C(n, p) \frac{(1 - r)(1 - \rho)/\kappa)^p}{(1 - r)(1 - \rho)}
\int_0^\infty x^{n-2}(1 + x^2)^{(1-n-p+(p+1-n)^+)/2} dx
\leq C(n, p) \frac{(1 - r)(1 - \rho)/|\rho - r|)^p}{(1 - r)(1 - \rho)}
\]
by means of the substitution \(t = /ex \). Thus
\[
(1 - r)^\alpha \mathcal{M}_p(G(\cdot, Y); r) \leq C(n, p)(1 - |Y|) \quad (Y \in B(1) \setminus E(r)).
\]

Now let \(\varepsilon > 0 \) and choose \(R \in (0, 1) \) large enough to ensure that
\[
\int_{A(R, 1)} (1 - |Y|) d\mu(Y) < \varepsilon.
\]
Simple estimates yield
\[
G(X, Y) \leq C(n, R)(1 - |X|) \quad (|Y| \leq R; (1 + R)/2 < |X| < 1).
\]
Hence, if \(r \in ((1 + R)/2, 1) \), it follows from (4) that
\[
(1 - r)^\alpha \int_{B(1) \setminus E(r)} \mathcal{M}_p(G(\cdot, Y); r) d\mu(Y)
\leq C(n, R)(1 - r)^{\alpha+1} \mu(|Y| \leq R) + C(n, p)\varepsilon
\rightarrow C(n, p)\varepsilon \quad (r \rightarrow 1-).
\]
Since \(\varepsilon > 0 \) was arbitrary, the lemma is proved.

2.3.

Lemma 2. Let \(p, \alpha \) be as above, let \(r > \frac{1}{2} \) and \(Y \in E(r) \). Then
\[
(1 - |Y|)^{-1}(1 - r)^\alpha \mathcal{M}_p(G(\cdot, Y); r) \leq \begin{cases}
C(n, p) & (0 < \alpha < 1), \\
C(n, p) \log ((1 - r)/|Y| - r) & (\alpha = 1), \\
C(n, p) [(1 - r)/|Y| - r]|^{\alpha - 1} & (1 < \alpha < 2).
\end{cases}
\]
To prove the lemma, let \(r > \frac{1}{2}, X \in S(r), Y \in E(r) \) and \(\rho = |Y| \). Then
\[
|rY - r^{-1}X| \leq |rY - Y| + |Y - X| + |X - r^{-1}X| < 2(1 - r) + |Y - X|
\]
and
\[
|\rho - r| < (1 - r)/4 < (1 - \rho)/3.
\]
We deal first with the case \(n \geq 3 \), where
\[
G(X, Y) \leq (n - 2)|Y - X|^{2-n}\{1 - |Y - X|/|rY - r^{-1}X|\}
\leq 2(n - 2)(1 - r)|Y - X|^{2-n}/\{2(1 - r) + |Y - X|\}.
\]
Hence, as in the proof of Lemma 1,

\[
\int_{S(r)} [G(X,Y)]^p \, d\sigma(X) \\
\leq C(n,p)(1-r)^p \int_0^{\pi} \sin^{n-2} \theta \{ (\rho - r \cos \theta)^2 + (r \sin \theta)^2 \}^{p-np/2} \\
\times \{ 2(1-r) + [(\rho - r \cos \theta)^2 + (r \sin \theta)^2]^{1/2} \}^{-p} \, d\theta \\
\leq C(n,p)(1-r)^p \int_0^{\infty} t^{n-2} (1+\kappa^2)^{(n-1)(p-2)/2} (\kappa^2 + t^2)^{p-np/2} \\
\times \{ (1-r)(1+t^2)^{1/2} + (\kappa^2 + t^2)^{1/2} \}^{-p} \, dt \\
\leq C(n,p)(1-r)^p \int_0^{\infty} t^{n-2} (1+\kappa^2)^{(n-1)(p-2)/2} \\
\times (\kappa^2 + t^2)^{p-np/2} \{ (1-r) + t \}^{-p} \, dt
\]

where \(\kappa = |\rho - r|/(\rho + r) \). We split up the integral in (5) into the components \(J_1, J_2, J_3, J_4 \) corresponding to the intervals \([0,\kappa], [\kappa, 1-r], [1-r, 1], [1, \infty) \). Then

\[
J_1 \leq C(n,p)(1-r)^{-p} \int_0^{\kappa} t^{n-2}(\kappa^2 + t^2)^{p-np/2} \, dt \\
= C(n,p)(1-r)^{-p} \kappa^{p(1-\alpha)} \int_0^{\pi/4} \sin^{-2} \phi \cos^{p-2} \phi \, d\phi
\]

using the substitution \(t = \kappa \tan \phi \). Next

\[
J_2 \leq C(n,p)(1-r)^{-p} \int_0^{1-r} t^{n-2}(1-t)^{p-1} \, dt \\
= C(n,p)(1-r)^{-p} \int_0^{1-r} t^{-p(\alpha-1)-1} \, dt \\
= \begin{cases}
C(n,p)(1-r)^{-p\alpha} & (0 < \alpha < 1), \\
C(n,p)(1-r)^{-p} \log \{(1-r)/\kappa \} & (\alpha = 1), \\
C(n,p)(1-r)^{-p\kappa^{p(1-\alpha)}} & (1 < \alpha < 2),
\end{cases}
\]

\[
J_3 \leq C(n,p) \int_{1-r}^{1} t^{n-2}(1-t)^{p-1} (1-r+t)^{-p} \, dt \\
\leq C(n,p) \int_{1-r}^{1} (1-r+t)^{p+n-p-2} \, dt \\
\leq C(n,p)(1-r)^{-\alpha p},
\]

\[
J_4 \leq C(n,p) \int_1^{\infty} t^{-n} \, dt = C(n,p).
\]

Hence, from (5),

\[
\int_{S(r)} [G(X,Y)]^p \, d\sigma(X) \leq \begin{cases}
C(n,p)(1-r)^{p(1-\alpha)} & (0 < \alpha < 1), \\
C(n,p) \log \{(1-r)/|\rho - r| \} & (\alpha = 1), \\
C(n,p)|\rho - r|^{p(1-\alpha)} & (1 < \alpha < 2).
\end{cases}
\]

The \(n \geq 3 \) case of the lemma now follows easily on taking \(p \)th roots and noting that \(\log \{(1-r)/|\rho - r| \} > \log 4 > 1 \).
The \(n = 2 \) case of the lemma is more straightforward, as here we have \(0 < \alpha < 1 \).

Since

\[G(X, Y) \leq \log\{1 + 2(1 - r)/|Y - X|\}, \]

it follows as before that

\[
\int_{S(r)} [G(X, Y)]^p \, d\sigma(X)
\]

\[
\leq \pi^{-1} \int_0^\pi \left\{ \log\left[1 + 2(1 - r)\{(\rho - r \cos \theta)^2 + (r \sin \theta)^2\}^{-1/2} \right] \right\}^p \, d\theta
\]

\[
\leq 2\pi^{-1} \int_0^\infty (1 + t^2)^{-1} \left\{ \log\left[1 + 4(1 - r)(1 + t^2)^{1/2}(\kappa^2 + t^2)^{-1/2} \right] \right\}^p \, dt.
\]

We split up the integral in (6) into the components \(J_1, J_2, J_3 \) corresponding to the intervals \([0, 1 - r], [1 - r, 1], [1, \infty)\). Then

\[J_1 \leq \int_0^{1-r} \{\log [7(1 - r)t^{-1}]\}^p \, dt = C(p)(1 - r), \]

\[J_2 \leq \int_{1-r}^1 \{\log [1 + 6(1 - r)t^{-1}]\}^p \, dt \]

\[\leq 6p(1 - r)^p \int_{1-r}^1 t^{-p} \, dt \leq C(p)(1 - r), \]

\[J_3 \leq \int_1^\infty t^{-2}\{\log [1 + 6(1 - r)]\}^p \, dt \leq 6p(1 - r)^p, \]

and so from (6)

\[\int_{S(r)} [G(X, Y)]^p \, d\sigma(X) \leq C(p)(1 - r). \]

Hence

\[(1 - |Y|)^{-1}(1 - r)^\alpha \mathcal{M}_p(G(, Y); r) \leq \frac{2}{3}(1 - r)^{-1/p} \mathcal{M}_p(G(, Y); r) \leq C(p), \]

as required.

3. **Proof of Theorem 1.** Let \(1 < p < (n - 1)/(n - 2) \), so that \(0 < \alpha < 1 \), and let \(\mu \) be the measure corresponding to the potential \(v \). By Minkowski’s inequality,

\[
\mathcal{M}_p(v; r) = \left\{ \int_{S(r)} \left[\int_{B(1)} G(X, Y) \, d\mu(Y) \right]^p d\sigma(X) \right\}^{1/p}
\]

\[\leq \int_{B(1)} \mathcal{M}_p(G(, Y); r) \, d\mu(Y). \]

Thus, from Lemmas 1 and 2,

\[(1 - r)^\alpha \mathcal{M}_p(v; r) \leq o(1) + C(n, p) \int_{E(r)} (1 - |Y|) d\mu(Y) = o(1) \quad (r \to 1) \]

in the light of (3).
4. Proof of Theorem 2.

4.1. If \(\mu \) is a measure on \(B(1) \) satisfying (3), we define a finite measure \(\mu^* \) on \(B(1) \) by \(d\mu^*(Y) = (1 - |Y|) d\mu(Y) \). For any interval \(I \subseteq [0, 1) \), let \(A(I) = \{ X : |X| \in I \} \). The maximal function \(M(d\mu^*) \) is defined by

\[
M(d\mu^*)(t) = \sup_{I \ni t} \mu^*(A(I))/|I|,
\]

where \(|I| \) denotes the Lebesgue measure of \(I \). Also, for each \(k \in \mathbb{N} \), we define the interval \(I_k = [1 - 2^{-k}, 1 - 2^{-k-1}] \), and denote by \(\mu_k^* \) the restriction of \(\mu^* \) to \(A(I_k) \). Well-known estimates for the maximal function yield the following lemma (cf. [5, p. 453]).

Lemma A. For each \(k \in \mathbb{N} \), there exists \(r_k \in (1 - 2^{-k}/5, 1 - 2^{-k}/3) \) such that

\[
M(d\mu_k^*)(r_k) < 2^{k+4} \mu^*(A(I_k)).
\]

4.2. We now prove Theorem 2. Let \(n \geq 3 \) and \((n-1)/(n-2) < p < (n-1)/(n-3) \), so that \(1 < \alpha < 2 \), and let \(\mu \) be the measure corresponding to the potential \(v \). We give below the argument for \(1 < \alpha < 2 \), the case \(\alpha = 1 \) being similar.

As in §3,

\[
(1 - r)^\alpha M_p(v; r) \leq o(1) + C(n, p) \int_{E(r)} \left[\frac{1 - r}{|Y| - r} \right]^{\alpha - 1} d\mu^*(Y)
\]

as \(r \to 1^- \). Now let \((r_k)\) be a sequence as in Lemma A. Fixing \(k \) and approximating \([1 - r_k]/|x - r_k|\)^{\alpha - 1} by a monotone increasing sequence of step functions of the form

\[
f(x) = \sum_{j=1}^N a_j \chi_{I_j}(x),
\]

where each \(a_j \) is nonnegative and each interval \(I_j \) is symmetric about \(r_k \) it follows that

\[
\int_{E(r_k)} \left[\frac{1 - r_k}{|Y| - r_k} \right]^{\alpha - 1} d\mu^*(Y) \leq 2M(d\mu_k^*)(r_k)(1 - r_k)^{\alpha - 1} \int_0^{(1-r_k)/4} x^{1-\alpha} \, dx
\]

\[
= C(n, p)(1 - r_k)M(d\mu_k^*)(r_k).
\]

Since, from Lemma A,

\[
(1 - r_k)M(d\mu_k^*)(r_k) \leq 2^{4} \mu^*(A(I_k)),
\]

it now follows from (7) that

\[
(1 - r_k)^\alpha M_p(v; r_k) \leq o(1) + C(n, p)\mu^*(A(I_k)) = o(1) \quad (k \to \infty),
\]

as required.

5. Examples 3 and 4.

5.1. Let \(h \) be as in Example 3 and \(p \geq 1 \). Then

\[
\int_{S(r)} [h(X)]^p \, d\sigma(X)
\]

\[
= C(n)(1 - r^2)^p \int_0^\pi \sin^{n-2} \theta \{ (1 - r \cos \theta)^2 + (r \sin \theta)^2 \}^{-np/2} \, d\theta
\]

\[
= C(n)(1 - r^2)^p \int_0^\infty t^{n-2}(1 + t^2)^{-n+np/2} \{ (1 - r)^2 + (1 + r)^2 t^2 \}^{-np/2} \, dt.
\]
Splitting up the integral in (8) into the components J_1, J_2 corresponding to the intervals $[0, 1], [1, \infty)$, it is clear from dominated convergence that $J_2(r)$ has a finite limit as $r \to 1^-$. Also

$$(1 - r)^{np + 1 - n} J_1(r) = (1 + r)^{1 - n} \int_0^{\tan^{-1} \left(\frac{(1 + r)/(1 - r)}{} \right)} \sin^{n-2} \phi \cos^{p-1} \phi$$

$$\times \left(1 + (1 - r)^2 (1 + r)^{-2} \tan^2 \phi \right)^{1 - n + np/2} \, d\phi$$

has a finite positive limit as $r \to 1^-$, so

$$(9) \quad (1 - r)^{(n - 1)(1 - 1/p)} \mathcal{M}_p(h; r) \to C(n, p) \quad (r \to 1^-).$$

5.2. By Minkowski's inequality it is sufficient to show that

$$(10) \quad (1 - r)^{(n - 1)(1 - 1/p)} \mathcal{M}_p(h; r) \to 0 \quad (r \to 1^-)$$

for any positive harmonic function h in $B(1)$ which does not majorize any positive multiple of a Poisson kernel. For simplicity we show this when $n = 2$; the higher dimensional argument requires minor modification.

Let μ be the measure on $[0, 2\pi)$ associated with h in the Poisson integral representation. From §5.1 it is straightforward to deduce that

$$\limsup_{r \to 1^-} (1 - r)^{(p - 1)} \int_{\alpha}^{\beta} \left\{ h(re^{i\theta}) \right\}^p d\theta \leq C(p) \left\{ \mu(\{\alpha, \beta\}) \right\}^p$$

for $0 \leq \alpha < \beta < 2\pi$. Let k be a positive integer. No singleton has positive measure, so we can let $0 = \gamma_0 < \gamma_1 < \cdots < \gamma_k = 2\pi$ be such that

$$\mu(\{\gamma_i - \gamma_{i-1}\}) = \mu([0, 2\pi))/k$$

for each $i \in \{1, \ldots, k\}$. Then

$$\limsup_{r \to 1^-} (1 - r)^{(p - 1)} \int_0^{2\pi} \left\{ h(re^{i\theta}) \right\}^p d\theta \leq C(p) \left\{ \mu([0, 2\pi]) \right\}^p k^{1 - p}.$$

Since k can be arbitrarily large, (10) holds for any $p > 1$.

5.3. To establish Example 4, let $\varepsilon > 0$ and $p \geq 1$, and choose $\beta \in (1 - \varepsilon/n, 1)$. If h is as in Example 3, it is easy to see that h^β is a potential in $B(1)$. As in (8), we have

$$\mathcal{M}_p(h^\beta; r)^p \geq C(n, p)(1 - r)^{\beta p} \int_0^{1 - r} t^{n-2} \left\{ (1 - r)^2 + t^2 \right\}^{-np/2} \, dt$$

$$= C(n, p)(1 - r)^{(n - 1)(1 - 1/p)} \int_0^{\pi/4} \sin^{n-2} \phi \cos^{n(p\beta - 1)} \phi \, d\phi,$$

and so

$$(1 - r)^{(n - 1)(1 - 1/p) - \varepsilon} \mathcal{M}_p(h^\beta; r) \geq C(n, p)(1 - r)^{-\varepsilon/n} \to +\infty \quad (r \to 1^-)$$

as claimed.
REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY COLLEGE, BELFIELD, DUBLIN 4, IRELAND