Growth properties of $p$th means of potentials in the unit ball
HTML articles powered by AMS MathViewer
- by S. J. Gardiner
- Proc. Amer. Math. Soc. 103 (1988), 861-869
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947671-3
- PDF | Request permission
Abstract:
Let $v$ be a potential in the unit ball of ${{\mathbf {R}}^n}$, and ${\mathcal {M}_p}(v;r)$ be its $p$th order mean over the sphere of radius $r$ centred at the origin. It is shown that, as $r \to 1 -$, the function $f(r) = {(1 - r)^{(n - 1)(1 - 1/p)}}{\mathcal {M}_p}(v;r)$ has limit 0 when $1 \leq p{\text { < }}(n - 1)/(n - 2)$, and has lower limit 0 when $n \geq 3$ and $(n - 1)/(n - 2) \leq p{\text { < }}(n - 1)/(n - 3)$. This extends a result of Stoll, who showed that, when $n = 2$ and $p = + \infty ,\lim {\inf _{r \to 1 - }}f(r) = 0$. Examples are given to show that the theorems presented are best possible.References
- Maurice Heins, The minimum modulus of a bounded analytic function, Duke Math. J. 14 (1947), 179β215. MR 20639
- W. C. Nestlerode and M. Stoll, Radial limits of $n$-subharmonic functions in the polydisc, Trans. Amer. Math. Soc. 279 (1983), no.Β 2, 691β703. MR 709577, DOI 10.1090/S0002-9947-1983-0709577-4
- Joel H. Shapiro and Allen L. Shields, Unusual topological properties of the Nevanlinna class, Amer. J. Math. 97 (1975), no.Β 4, 915β936. MR 390227, DOI 10.2307/2373681
- M. Stoll, Boundary limits of subharmonic functions in the disc, Proc. Amer. Math. Soc. 93 (1985), no.Β 3, 567β568. MR 774024, DOI 10.1090/S0002-9939-1985-0774024-0
- Manfred Stoll, Boundary limits of Green potentials in the unit disc, Arch. Math. (Basel) 44 (1985), no.Β 5, 451β455. MR 792369, DOI 10.1007/BF01229328
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 861-869
- MSC: Primary 31B25
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947671-3
- MathSciNet review: 947671