## A new proof of an inequality of Littlewood and Paley

HTML articles powered by AMS MathViewer

- by Daniel H. Luecking
- Proc. Amer. Math. Soc.
**103**(1988), 887-893 - DOI: https://doi.org/10.1090/S0002-9939-1988-0947675-0
- PDF | Request permission

## Abstract:

A fairly elementary new proof is presented of the inequality $(p \geq 2)$: \[ \int {{{\left | {h’} \right |}^p}{{\left ( {1 - \left | z \right |} \right )}^{p - 1}}dxdy \leq \left \| h \right \|_{{H^p}}^p} ,\quad f \in {H^p}.\] In addition, the inequality \[ \int {{{\left | h \right |}^{p - s}}{{\left | {h’} \right |}^s}{{(1 - \left | z \right |)}^{s - 1}}dxdy \leq \left \| h \right \|_{{H^p}}^p} \] is shown to hold for $h \in {H^p},p > 0$, if and only if $2 \leq s < p + 2$, generalizing the known case $s = 2$.## References

- John B. Garnett,
*Bounded analytic functions*, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR**628971**
A. Gluchoff, - Daniel H. Luecking,
*Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives*, Amer. J. Math.**107**(1985), no. 1, 85–111. MR**778090**, DOI 10.2307/2374458 - Walter Rudin,
*The radial variation of analytic functions*, Duke Math. J.**22**(1955), 235–242. MR**79093** - Joel H. Shapiro,
*The essential norm of a composition operator*, Ann. of Math. (2)**125**(1987), no. 2, 375–404. MR**881273**, DOI 10.2307/1971314 - Charles S. Stanton,
*Counting functions and majorization for Jensen measures*, Pacific J. Math.**125**(1986), no. 2, 459–468. MR**863538**
P. Stein, - Shinji Yamashita,
*Criteria for functions to be of Hardy class $H^{p}$*, Proc. Amer. Math. Soc.**75**(1979), no. 1, 69–72. MR**529215**, DOI 10.1090/S0002-9939-1979-0529215-8

*Thesis*, Univ. of Wisconsin, Madison, Wis., 1981. J. E. Littlewood and R. E. A. C. Paley,

*Theorems on Fourier series and power series*. II, Proc. London Math. Soc.

**42**(1936), 52-89.

*On a theorem of M. Reise*, J. London Math. Soc.

**8**(1933), 242-247.

## Bibliographic Information

- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**103**(1988), 887-893 - MSC: Primary 30D55
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947675-0
- MathSciNet review: 947675