A new proof of an inequality of Littlewood and Paley
HTML articles powered by AMS MathViewer
- by Daniel H. Luecking
- Proc. Amer. Math. Soc. 103 (1988), 887-893
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947675-0
- PDF | Request permission
Abstract:
A fairly elementary new proof is presented of the inequality $(p \geq 2)$: \[ \int {{{\left | {h’} \right |}^p}{{\left ( {1 - \left | z \right |} \right )}^{p - 1}}dxdy \leq \left \| h \right \|_{{H^p}}^p} ,\quad f \in {H^p}.\] In addition, the inequality \[ \int {{{\left | h \right |}^{p - s}}{{\left | {h’} \right |}^s}{{(1 - \left | z \right |)}^{s - 1}}dxdy \leq \left \| h \right \|_{{H^p}}^p} \] is shown to hold for $h \in {H^p},p > 0$, if and only if $2 \leq s < p + 2$, generalizing the known case $s = 2$.References
- John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971 A. Gluchoff, Thesis, Univ. of Wisconsin, Madison, Wis., 1981. J. E. Littlewood and R. E. A. C. Paley, Theorems on Fourier series and power series. II, Proc. London Math. Soc. 42 (1936), 52-89.
- Daniel H. Luecking, Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives, Amer. J. Math. 107 (1985), no. 1, 85–111. MR 778090, DOI 10.2307/2374458
- Walter Rudin, The radial variation of analytic functions, Duke Math. J. 22 (1955), 235–242. MR 79093
- Joel H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), no. 2, 375–404. MR 881273, DOI 10.2307/1971314
- Charles S. Stanton, Counting functions and majorization for Jensen measures, Pacific J. Math. 125 (1986), no. 2, 459–468. MR 863538 P. Stein, On a theorem of M. Reise, J. London Math. Soc. 8 (1933), 242-247.
- Shinji Yamashita, Criteria for functions to be of Hardy class $H^{p}$, Proc. Amer. Math. Soc. 75 (1979), no. 1, 69–72. MR 529215, DOI 10.1090/S0002-9939-1979-0529215-8
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 887-893
- MSC: Primary 30D55
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947675-0
- MathSciNet review: 947675