Closed sets without measurable matching
HTML articles powered by AMS MathViewer
- by M. Laczkovich
- Proc. Amer. Math. Soc. 103 (1988), 894-896
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947676-2
- PDF | Request permission
Abstract:
We construct a rectangle in the unit square such that its perimeter contains a matching (i.e. the graph of a bijection of the unit interval onto itself) but does not contain a Borel matching or a matching measurable with respect to the linear measure.References
- Béla Bollobás, Graph theory, Graduate Texts in Mathematics, vol. 63, Springer-Verlag, New York-Berlin, 1979. An introductory course. MR 536131
- Siegfried Graf and R. Daniel Mauldin, Measurable one-to-one selections and transition kernels, Amer. J. Math. 107 (1985), no. 2, 407–425. MR 784290, DOI 10.2307/2374421
- Paul R. Halmos, Lectures on ergodic theory, Publications of the Mathematical Society of Japan, vol. 3, Mathematical Society of Japan, Tokyo, 1956. MR 0097489
- J. Kaniewski and C. A. Rogers, Double uniformization, J. London Math. Soc. (2) 22 (1980), no. 3, 521–533. MR 596330, DOI 10.1112/jlms/s2-22.3.521 D. König, Sur les correspondences multivoques des ensembles, Fund. Math. 8 (1926), 114-134.
- R. Daniel Mauldin, One-to-one selections—marriage theorems, Amer. J. Math. 104 (1982), no. 4, 823–828. MR 667537, DOI 10.2307/2374207
- R. Rado, Factorization of even graphs, Quart. J. Math. Oxford Ser. 20 (1949), 95–104. MR 30202, DOI 10.1093/qmath/os-20.1.95
- V. N. Sudakov, The independent complement to two decompositions in the case of the existence of bounded density, Trudy Mat. Inst. Steklov. 111 (1970), 3–11. (errata insert) (Russian). MR 0290423
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 894-896
- MSC: Primary 28A75; Secondary 28B20
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947676-2
- MathSciNet review: 947676