The nonimbeddability of real hypersurfaces in spheres
HTML articles powered by AMS MathViewer
- by James J. Faran
- Proc. Amer. Math. Soc. 103 (1988), 902-904
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947678-6
- PDF | Request permission
Abstract:
It is shown that there exist real analytic real hypersurfaces in ${{\mathbf {C}}^n}$ which cannot be locally holomorphically imbedded in any finite dimensional sphere ${S^{2N - 1}} \subset {{\mathbf {C}}^{2N}}$.References
- S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133 (1974), 219–271. MR 425155, DOI 10.1007/BF02392146
- Charles L. Fefferman, Monge-Ampère equations, the Bergman kernel, and geometry of pseudoconvex domains, Ann. of Math. (2) 103 (1976), no. 2, 395–416. MR 407320, DOI 10.2307/1970945 H. Poincaré, Les fonctions analytiques de deux variables et la represéntation conforme, Rend. Circ. Mat. Palermo 23 (1907), 185-220.
- László Lempert, Imbedding strictly pseudoconvex domains into a ball, Amer. J. Math. 104 (1982), no. 4, 901–904. MR 667541, DOI 10.2307/2374211
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 902-904
- MSC: Primary 32F15; Secondary 32H35
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947678-6
- MathSciNet review: 947678