A Kähler deformation of $\textbf {C}\textrm {P}^ n$
HTML articles powered by AMS MathViewer
- by H. Mori and Y. Watanabe
- Proc. Amer. Math. Soc. 103 (1988), 910-912
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947680-4
- PDF | Request permission
Abstract:
We shall construct a one-parameter family of complete Kähler metrics on the $n$-dimensional complex projective space $C{P^n}$, including the Fubini-study metric. We shall get, as a corollary, many noncanonical $S{C^m}$ Kähler structures on $C{P^n}$.References
- Arthur L. Besse, Manifolds all of whose geodesics are closed, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 93, Springer-Verlag, Berlin-New York, 1978. With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Bérard-Bergery, M. Berger and J. L. Kazdan. MR 496885, DOI 10.1007/978-3-642-61876-5
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1963. MR 0152974 H. Mori and Y. Watanabe, Remarks on geodesics in a compact rotationally symmetric manifold, preprint.
- Yoshiyuki Watanabe, Unitary-symmetric Kählerian manifolds and pointed Blaschke manifolds, Tsukuba J. Math. 12 (1988), no. 1, 129–148. MR 949906, DOI 10.21099/tkbjm/1496160640
Bibliographic Information
- © Copyright 1988 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 103 (1988), 910-912
- MSC: Primary 53C55; Secondary 32G05, 32J99
- DOI: https://doi.org/10.1090/S0002-9939-1988-0947680-4
- MathSciNet review: 947680